Skip to main content
Log in

Effect of point defects on luminescence characteristics of ZnO ceramics

  • Impurity Centers
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Photo- and thermally stimulated luminescence of ZnO ceramics are produced by uniaxial hot pressing. The luminescence spectra of ceramics contain a wide band with a maximum at 500 nm, for which oxygen vacancies VO are responsible, and a narrow band with a maximum at 385 nm, which is of exciton nature. It follows from luminescence excitation spectra that the exciton energy is transferred to luminescence centers in ZnO. An analysis of the thermally stimulated luminescence curves allowed detection of a set of discrete levels of point defects with activation energies of 25, 45, 510, 590 meV, and defects with continuous energy distributions in the range of 50–100 meV. The parameters of some of the detected defects are characteristic of a lithium impurity and hydrogen centers. The photoluminescence kinetics are studied in a wide temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoçd, J. Appl. Phys. 98, 041301 (2005).

    Article  ADS  Google Scholar 

  2. D. G. Thomas, J. Phys. Chem. Solids 15, 86 (1960).

    Article  ADS  Google Scholar 

  3. H. Chen, S. Gu, K. Tang, S. Zhu, Zh. Zhu, J. Ye, R. Zhang, and Y. Zheng, J. Lumin. 131, 1189 (2011).

    Article  Google Scholar 

  4. Y. Wang, B. Yang, N. Can, and P. D. Townsend, J. Appl. Phys. 109, 053508 (2011).

    Article  ADS  Google Scholar 

  5. C. Ton-That, L.Weston, and M. R. Phillips, Phys. Rev. B: Condens. Matter 86, 115205 (2012).

    Article  ADS  Google Scholar 

  6. T. Moe Berseth, B. G. Svenson, A. Yu. Kuznetsov, P. Klason, Q. X. Zhao, and M. Willander, Appl. Phys. Lett. 89, 262112 (2006).

    Article  ADS  Google Scholar 

  7. D. M. Hoffmann, A. Hofstaetter, F. Leiter, H. Zhou, F. Henecker, B. K. Meyer, S. B. Orlinskii, J. Schmidt, and P. G. Baranov, Phys. Rev. Lett. 88, 045504 (2002).

    Article  ADS  Google Scholar 

  8. F. Leiter, H. Alves, D. Pfisterer, N. G. Romanov, D. M. Hofmann, and B. K. Meyer, Physica B (Amsterdam) 201, 340 (2003).

    Google Scholar 

  9. C. Ton-That, L. L. C. Lem, M. R. Phillips, F. Reisdorffer, J. Mevellec, T.-P. Nguyen, C. Nenstiel, and A. Hoffmann, New J. Phys. 16, 083040 (2014).

    Article  ADS  Google Scholar 

  10. F. Oba, M. Choi, A. Togo, and I. Tanaka, Sci. Technol. Adv. Mater. 12, 034302 (2011).

    Article  Google Scholar 

  11. Ji Jianfeng, L. A. Boatner, and F. A. Selim, Appl. Phys. Lett. 105, 041102 (2014).

    Article  ADS  Google Scholar 

  12. D. C. Reynolds, D. C. Look, and B. Jogai, J. Appl. Phys. 89, 6189 (2001).

    Article  ADS  Google Scholar 

  13. K. Kodama and T. Uchino, J. Appl. Phys. 111, 093525 (2012).

    Article  ADS  Google Scholar 

  14. C. Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier-Flaig, D. Schneider, and H. Kalt, Phys. Status Solidi B 247, 1424 (2010).

    Article  ADS  Google Scholar 

  15. K. Tapan and J. Gupta, Am. Ceram. Soc. 73 1817 (1990).

    Article  Google Scholar 

  16. V. I. Kushnirenko, I. V. Markevich, and A. V. Rusavsky, Radiat. Meas. 45, 468 (2010).

    Article  Google Scholar 

  17. R. C. Hoffmann and J. J. Schneider, J. Am. Ceram. Soc. 94, 1878 (2011).

    Article  Google Scholar 

  18. M. Hong, D. Fredrick, D. M. Devito, J. Y. Howe, Xia Yang, N. C. Giles, J. S. Neal, and Zu. A. Munir, Int. J. Appl. Ceram. Technol. 8, 725 (2011).

    Article  Google Scholar 

  19. I. V. Markevich and V. I. Kushnirenko, Solid State Commun. 149, 866 (2009).

    Article  ADS  Google Scholar 

  20. Wen Xiao-ming, N. Ohno, and Zh. Zhong-ming, Chin. Phys. 10, 874 (2001).

    Article  ADS  Google Scholar 

  21. L. Grigorjeva, D. Millers, J. Grabis, J. Fidelus, W. Lojkowski, T. Chudoba, and K. Bienkowski, Radiat. Meas. 45, 441 (2010).

    Article  Google Scholar 

  22. E. I. Gorokhova, P. A. Rodnyi, K. A. Chernenko, G. V. Anan’eva, S. B. Eron’ko, E. A. Oreshchenko, I. V. Khodyuk, E. P. Lokshin, G. B. Kunshina, O. G. Gromov, and K. P. Lott, Opt. Zh. 78, 85 (2011).

    Google Scholar 

  23. R. Chen and V. Pagonis, Thermally and Optically Stimulated Luminescence: A Simulation Approach (Wiley, New York, 2011).

    Book  Google Scholar 

  24. I. Kudryavtseva, A. Lushchik, A. I. Nepomnyashchikh, F. Savikhin, E. Vasil’chenko, and Yu. Lisovskaya, Phys. Solid State 50 (9), 1667 (2008).

    Article  ADS  Google Scholar 

  25. K. Kodama and T. Uchino, J. Phys. Chem. C 118, 23977 (2014).

    Article  Google Scholar 

  26. J. V. Foreman, J. G. Simmons, W. E. Baughman, J. Liu, and H. O. Everitt, J. Appl. Phys. 113, 133513 (2013).

    Article  ADS  Google Scholar 

  27. D. Zwingel, J. Lumin. 5, 385 (1972).

    Article  Google Scholar 

  28. G. Baur, E. V. Freydorf, and W. H. Koschel, Phys. Status Solidi A 21, 247 (1974).

    Article  ADS  Google Scholar 

  29. Y. P. Tu, Q. Wang, J. He, X. Li, and L. J. Ding, Sci. China Tech. Sci. 56, 677 (2013).

    Article  Google Scholar 

  30. A. B. Djurisic, Y. H. Leung, K. H. Tam, L. Ding, W. K. Ge, H. Y. Chen, and S. Gwo, Appl. Phys. Lett. 88, 103107 (2006).

    Article  ADS  Google Scholar 

  31. M. Willander, O. Nur, J. R. Sadaf, M. I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, and I. Hussain, Materials 3, 2643 (2010).

    Article  ADS  Google Scholar 

  32. A. Vedda, M. Nikl, M. Fasoli, E. Mihokova, J. Pejchal, M. Dusek, G. Ren, C. R. Stanek, K. J. McClellan, and D. D. Byler, Phys. Rev. B: Condens. Matter 78, 195123 (2008).

    Article  ADS  Google Scholar 

  33. E. M. Zobov, M. E. Zobov, and S. P. Kramynin, J. Appl. Spectrosc. 77 (6), 841 (2011).

    Article  ADS  Google Scholar 

  34. W. Xiao-ming, N. Ohno, and Zh. Zhong-ming, Chin. Phys. 10, 874 (2001).

    Article  ADS  Google Scholar 

  35. L. Grigorjeva, D. Millers, A. Kalinko, V. Pankratov, and K. Smits, J. Eur. Ceram. Soc. 29, 255 (2009).

    Article  Google Scholar 

  36. H. Haiping, Ye Zhizhen, L. Shisheng, Zh. Binghui, H. Jingyun, and T. Haiping, J. Phys. Chem. C 112, 14262 (2008).

    Article  Google Scholar 

  37. M. Nikl, G. P. Pazzi, P. Fabeni, E. Mihokova, J. Pejchal, D. Ehrentraut, A. Yoshikawa, and R. T. Williams, J. Lumin. 129, 1564 (2009).

    Article  Google Scholar 

  38. A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, J. Phys. Chem. B 104, 1715 (2000).

    Article  Google Scholar 

  39. H. He, Z. Ye, S. Lin, B. Zhao, J. Huang, and H. Tang, J. Phys. Chem. C 112, 14262 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Chernenko.

Additional information

Original Russian Text © P.A. Rodnyi, K.A. Chernenko, A. Zolotarjovs, L. Grigorjeva, E.I. Gorokhova, I.D. Venevtsev, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 10, pp. 1982–1988.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodnyi, P.A., Chernenko, K.A., Zolotarjovs, A. et al. Effect of point defects on luminescence characteristics of ZnO ceramics. Phys. Solid State 58, 2055–2061 (2016). https://doi.org/10.1134/S1063783416100309

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416100309

Navigation