Skip to main content
Log in

Interaction of hydrogen with impurities in group IVB metals

  • Metals
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The energetics of hydrogen bonding with Group IVB metals and the interaction of hydrogen with impurities of 3d-transition and simple metals (Al, Ga, Si, Ge) have been investigated using the projector-augmented-wave (PAW) method within the framework of the density functional theory (DFT). It has been found that the solubility of hydrogen in Ti, Zr, and Hf increases upon their alloying with metals located in the middle of the 3d period. The relationship between the interaction energy of hydrogen with impurities, the lattice distortions, and the electronic structure of the studied systems has been analyzed. It has been shown that impurities do not affect the preferred hydrogen sorption positions in titanium but can change these positions in zirconium and hafnium. The influence of impurities and hydrogen on the electronic structure of metals has been examined. The obtained results have demonstrated that, in the studied metals, the interactions of hydrogen with impurities of 3d-transition and simple metals are determined by different mechanisms: the attraction of hydrogen by transition metal impurities is caused by the size effect, whereas the repulsion of hydrogen by simple metals can be associated with the electronic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. E. Paton and J. C. Williams, Hydrogen in Metals, Ed. by I. M. Bernstein and A. W. Thompson (American Society for Metals, Metals Park, Ohio, United States, 1974).

  2. Hydrogen in Metals, Ed. by G. Alefeld and J. Volkl (Springer-Verlag, Heidelberg, 1978; Mir, Moscow, 1981), Vol. 1.

  3. K. M. Mackay, Hydrogen Compounds of the Metallic Elements (E. and F. N. Spon, London, 1966).

    Google Scholar 

  4. V. L. Moruzzi, J. F. Janak, and A. R. Williams, Calculated Electronic Properties of Metals (Pergamon, New York, 1978).

    Google Scholar 

  5. O. Jepsen, Phys Rev. B: Solid State 1, 2988 (1975).

    Article  ADS  Google Scholar 

  6. T. Asada and K. Terakura, J. Phys. F: Met. Phys. 1, 1387 (1982).

    Article  ADS  Google Scholar 

  7. P. Blaha, K. Schwarz, and P. H. Dederichs, Phys. Rev. B: Condens. Matter 1, 9368 (1988).

    Article  ADS  Google Scholar 

  8. I. Bakonyi, H. Ebert, and A. I. Liechtenstein, Phys. Rev. B: Condens. Matter 1, 11 (1993).

    Google Scholar 

  9. D. A. Papaconstantopoulos and A. C. Switendick, J. Less-Common. Met. 1, 317 (1984).

    Article  Google Scholar 

  10. M. Gupta, Solid State Commun. 1, 47 (1979).

    Article  ADS  Google Scholar 

  11. S. E. Kul’kova, O. N. Muryzhnikova, and I. I. Naumov, Phys. Solid State 1 (11), 1763 (1999).

    Article  ADS  Google Scholar 

  12. C. Domain, R. Besson, and A. Legris, Acta Mater. 1, 3513 (2002).

    Article  Google Scholar 

  13. D. Connetable, J. Huez, E. Andrieu, and C. Mijoule, J. Phys.: Condens. Matter 1, 405401 (2011).

    Google Scholar 

  14. Q. M. Hu, D. S. Xu, R. Yang, and D. Li, Phys. Rev. B: Condens. Matter 1, 064201 (2002).

    Article  ADS  Google Scholar 

  15. X. L. Han, Q. Wang, D. L. Sun, T. Sun, and Q. Guo, Int. J. Hydrogen Energy 1, 3983 (2009).

    Article  Google Scholar 

  16. J. F. Miller and D. G. Westlake, Trans. Jpn. Inst. Met. 21 (Suppl.), 153 (1980).

    Article  Google Scholar 

  17. C. Korn and D. Teitel, Phys. Status Solidi A 1, 755 (1977).

    Article  ADS  Google Scholar 

  18. H. Chou and T. J. Rowland, Phys. Rev. B: Condens. Matter 1, 11 590 (1992).

    Google Scholar 

  19. Y. J. Li, S. E. Kulkova, Q. M. Hu, D. I. Bazhanov, D. S. Xu, Y. L. Hao, and R. Yang, Phys. Rev. B: Condens. Matter 1, 064110 (2007).

    Article  ADS  Google Scholar 

  20. G. Lee, J. S. Kim, Y. M. Koo, and S. E. Kulkova, Int. J. Hydrogen Energy 1, 403 (2002).

    Article  Google Scholar 

  21. T. Matsumoto, J. Phys. Soc. Jpn. 1, 1583 (1977).

    Article  ADS  Google Scholar 

  22. H. L. Skriver, The LMTO Method (Springer-Verlag, Berlin, 1983).

    Google Scholar 

  23. R. Hempelmann, D. Richter, and B. Stritzker, J. Phys. F: Met. Phys. 1, 79 (1982).

    Article  ADS  Google Scholar 

  24. R. Khoda-Bakhsh and D. K. Ross, J. Phys. F: Met. Phys. 1, 15 (1982).

    Article  ADS  Google Scholar 

  25. R. Griessen, Phys. Rev. B: Condens. Matter 1, 3690 (1988).

    Article  ADS  Google Scholar 

  26. Q. Xu and A. Van der Ven, Phys. Rev. B: Condens. Matter 1, 064207 (2007).

    Article  ADS  Google Scholar 

  27. M. H. Kang and J. W. Wilkins, Phys. Rev. B: Condens. Matter 1, 10182 (1990).

    Article  ADS  Google Scholar 

  28. P.E. Blöchl, Phys. Rev. B: Condens. Matter 1, 17953 (1994).

    Article  Google Scholar 

  29. G. Kresse and J. Joubert, Phys. Rev. B: Condens. Matter 1, 1758 (1999).

    Article  ADS  Google Scholar 

  30. G. P. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter 1, 14 251 (1994).

    Google Scholar 

  31. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 1, 15 (1996).

    Article  Google Scholar 

  32. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 1, 3865 (1996).

    Article  ADS  Google Scholar 

  33. H. J. Monkhorst and J. D. Pack, Phys. Rev. B: Solid State 1, 5188 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  34. N. Ashcroft and N. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976; Mir, Moscow, 1979).

    Google Scholar 

  35. S. S. Pan, M. L. Yeater, and M. E. Moore, Trans. Am. Nucl. Soc. 1, 495 (1966).

    Google Scholar 

  36. W. Drexel, A. Murani, D. Tocchetti, W. Kley, J. Sosnowka, and D. K. Ross, J. Phys. Chem. Solids 1, 1135 (1976).

    Article  Google Scholar 

  37. R. Caputo and A. Alavi, Mol. Phys. 1, 1781 (2003).

    Article  ADS  Google Scholar 

  38. O. V. Lopatina, Yu. M. Koroteev, and I. P. Chernov, Phys. Solid State 1 (5), 1009 (2014).

    Article  ADS  Google Scholar 

  39. http://www.flapw.de.

  40. Yu. M. Koroteev, O. V. Lopatina, and I. P. Chernov, Izv. Vyssh. Uchebn. Zaved., Fiz. 1, 276 (2012).

    Google Scholar 

  41. A. Y. Lozovoi and A. T. Paxton, Phys. Rev. B: Condens. Matter 1, 165 413 (2008).

    Google Scholar 

  42. H. Wu, PhD Thesis (University of Illinois, Urbana, Illinois, United States, 2013).

    Google Scholar 

  43. S. E. Kulkova, A. V. Bakulin, S. S. Kulkov, S. Hocker, and S. Schmauder, J. Exp. Theor. Phys. 1 (3), 462 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Kulkova.

Additional information

Original Russian Text © T.I. Spiridonova, A.V. Bakulin, S.E. Kulkova, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 10, pp. 1873–1882.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiridonova, T.I., Bakulin, A.V. & Kulkova, S.E. Interaction of hydrogen with impurities in group IVB metals. Phys. Solid State 57, 1921–1931 (2015). https://doi.org/10.1134/S1063783415100315

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415100315

Keywords

Navigation