Skip to main content
Log in

Bulk moduli of the silicon and germanium fullerenes Si60 and Ge60

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The bulk moduli of the silicon and germanium fullerenes Si60 and Ge60 of different symmetries have been calculated using the density functional theory method. It has been shown that the bulk moduli of metastable fullerenes of the highest symmetry I h have maximum values and exceed those of the corresponding bulk crystal structures by a factor of 1.5–1.7. The most stable fullerenes have the symmetry C 1 and lower bulk moduli. The bulk moduli of the silicon and germanium fullerenes Si60 and Ge60 exceed the bulk moduli of the corresponding crystal structures by factors of 1.44 and 1.38–1.40, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. E. Moore, Electronics 38, 114 (1965).

    Google Scholar 

  2. L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).

    Article  ADS  Google Scholar 

  3. H. W. Kroto, J. R. Heath, and S. C. O’Brien, Nature (London) 318, 162 (1985).

    Article  ADS  Google Scholar 

  4. M. F. Jarrold and V. A. Constant, Phys. Rev. Lett. 67, 2994 (1991).

    Article  ADS  Google Scholar 

  5. K. D. Rinnen and M. L. Mandich, Phys. Rev. Lett. 69, 1823 (1992).

    Article  ADS  Google Scholar 

  6. V. Kumar, Nanosilicon, Ed. by V. Kumar (Elsevier, Amsterdam, 2008).

  7. J. Leszczynski and I. Yanov, J. Phys. Chem. A 103, 396 (1999).

    Article  Google Scholar 

  8. H. Huira, T. Miyazaki, and T. Kanayama, Phys. Rev. Lett. 86, 1733 (2001).

    Article  ADS  Google Scholar 

  9. A. A. Ishchenko, G. V. Fetisov, and L. A. Aslanov, Nanosilicon: Properties, Synthesis, Applications, Methods of Analysis and Control (Fizmatlit, Moscow, 2011; CRC Press, Boca Raton, Florida, 2014).

    Google Scholar 

  10. B. Li, P. Cao, and D. Que, Phys. Rev. B: Condens. Matter 61, 1685 (2000).

    Article  ADS  Google Scholar 

  11. B. Li, P. Cao, B. Song, and Zh. Ye, J. Mol. Structure: THEOCHEM 620, 189 (2003).

    Article  Google Scholar 

  12. M. Valle and A. R. Oganov, Acta Crystallogr., Sect. A: Found. Crystallogr. 66, 507 (2010).

    Article  ADS  Google Scholar 

  13. E. F. Sheka, E. A. Nikitina, V. A. Zayets, and I. Ya. Ginzburg, Int. J. Quantum Chem. 88, 441 (2002).

    Article  Google Scholar 

  14. V. V. Filippov and A. N. Vlasov, Zh. Radilelektron. (Elektron. Zh.), No. 11 (2011). http://jre.cplire.ru/jre/nov11/15/text.html.

    Google Scholar 

  15. R. S. Ruoff and A. L. Ruoff, Appl. Phys. Lett. 59, 1553 (1991).

    Article  ADS  Google Scholar 

  16. M. G. Ahangaria, A. Fereidoon, M. D. Ganji, and N. Sharifi, Physica B (Amsterdam) 423, 1 (2013).

    Article  ADS  Google Scholar 

  17. M. S. Amer and J. F. Maguire, Chem. Phys. Lett. 476, 232 (2009).

    Article  ADS  Google Scholar 

  18. O. O. Kovalev and V. A. Kuzkin, Nanosyst.: Phys., Chem., Math. 2, 65 (2011).

    Google Scholar 

  19. J. Cai, R. F. Bie, X. M. Tanc, and C. Luc, Physica B (Amsterdam) 344, 99 (2004).

    Article  ADS  Google Scholar 

  20. M. Ghorbanzadeh Ahangari, A. Fereidoon, M. Darvish Ganji, and N. Sharifi, Physica B (Amsterdam) 423, 1 (2013).

    Article  ADS  Google Scholar 

  21. G. B. Adams, M. O. Keeffe, and R. S. Ruoff, J. Phys. Chem. 98, 9465 (1994).

    Article  Google Scholar 

  22. H. Hohenberg and W. Kohn, Phys. Rev. B: Condens. Matter 136, 864 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  23. W. Kohn and J. L. Sham, Phys. Rev. [Sect.] A 140, 1133 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  24. P. E. Blöchl, Phys. Rev. B: Condens. Matter 50, 17953 (1994).

    Article  ADS  Google Scholar 

  25. G. Kresse and D. Joubert, Phys. Rev. B: Condens. Matter 59, 1758 (1999).

    Article  ADS  Google Scholar 

  26. G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter 47, 558 (1993).

    Article  ADS  Google Scholar 

  27. G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter 49, 14251 (1994).

    Article  ADS  Google Scholar 

  28. G. Kresse and J. Furthmüller, Phys. Rev. B: Condens. Matter 54, 11169 (1996).

    Article  ADS  Google Scholar 

  29. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).

    Article  ADS  Google Scholar 

  30. J. P. Perdew and A. Zunger, Phys. Rev. B: Condens. Matter 23, 5048 (1981).

    Article  ADS  Google Scholar 

  31. J. P. Perdew and Y. Wang, Phys. Rev. B: Condens. Matter 33, 8800 (1986).

    Article  ADS  Google Scholar 

  32. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  33. Certificate of State Registration No. 2014660324.

  34. Martin Feyereisen, in http://www.ccl.net/chemistry/resources/data/fullerenes/index.shtml

  35. R. Crespo, M. C. Piqueras, and F. Tom, Synth. Met. 77, 13 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Lunyakov.

Additional information

Original Russian Text © Yu.V. Lunyakov, S.A. Balagan, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 6, pp. 1058–1063.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lunyakov, Y.V., Balagan, S.A. Bulk moduli of the silicon and germanium fullerenes Si60 and Ge60 . Phys. Solid State 57, 1073–1078 (2015). https://doi.org/10.1134/S1063783415060220

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415060220

Keywords

Navigation