Skip to main content
Log in

Fröhlich resonance in the AsSb/AlGaAs system

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The optical absorption in a metal-semiconductor metamaterial based on the AlGaAs matrix has been investigated. The key feature of this material is the presence of random arrays of metallic AsSb nanoinclusions modifying its dielectric properties. It has been shown that the presence of such arrays in the material leads to resonance absorption of light by surface plasmons in AsSb nanoinclusions in the incident photon energy range from 1.37 to 1.77 eV. The experimental spectrum of the extinction coefficient at an energy of 1.48 eV exhibits a resonance peak with the half-width equal to 0.18 eV. The extinction coefficient for AsSb nanoinclusions in the AlGaAs matrix has been calculated in terms of the Mie theory. The calculated spectrum of the extinction coefficient also includes a resonance peak with the energy and half-width equal to 1.48 and 0.18 eV, respectively. The calculated plasma energy for free-standing nanoinclusions in vacuum is 7.38 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Volume 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Butterworth-Heinemann, Oxford, 1984).

    Google Scholar 

  2. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957; Inostrannaya Literatura, Moscow, 1961).

    Google Scholar 

  3. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, London, 1959; Nauka, Moscow, 1973).

    MATH  Google Scholar 

  4. D. D. Nolte, J. Appl. Phys. 76(6), 3740 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  5. D. Crouse, D. D. Nolte, J. C. P. Chang, and M. R. Melloch, J. Appl. Phys. 81(12), 7981 (1997).

    Article  ADS  Google Scholar 

  6. P. V. Lukin, V. V. Chaldyshev, V. V. Preobrazhenskii, M. A. Putyato, and B. R. Semyagin, Semiconductors 46(10), 1291 (2012).

    Article  ADS  Google Scholar 

  7. J. H. Xu, E. G. Wang, C. S. Ting, and W. P. Su, Phys. Rev. B: Condens. Matter 48, 17271 (1993).

    Article  ADS  Google Scholar 

  8. V. I. Ushanov, V. V. Chaldyshev, V. V. Preobrazhenskii, M. A. Putyato, and B. R. Semyagin, Semiconductors 47(8), 1046 (2013).

    Article  ADS  Google Scholar 

  9. N. A. Bert, A. I. Veinger, M. D. Vilisova, S. I. Goloshchapov, I. V. Ivonin, S. V. Kozyrev, A. E. Kunitsyn, L. G. Lavrent’eva, D. I. Lubyshev, V. V. Preobrazhenskii, B. R. Semyagin, V. V. Tret’yakov, V. V. Chaldyshev, and M. P. Yakubenya, Phys. Solid State 35(10), 1289 (1993).

    ADS  Google Scholar 

  10. N. N. Faleev, V. V. Chaldyshev, A. E. Kunitsyn, V. V. Preobrazhenskii, M. A. Putyato, B. R. Semyagin, and V. V. Tret’yakov, Semiconductors 32(1), 19 (1998).

    Article  ADS  Google Scholar 

  11. D. A. Vasyukov, M. V. Baidakova, V. V. Chaldyshev, A. A. Suvorova, V. V. Preobrazhenskii, M. A. Putyato, and B. R. Semyagin, J. Phys. D: Appl. Phys. 34(10), A15 (2001).

    Article  ADS  Google Scholar 

  12. M. V. Baidakova, N. A. Bert, V. V. Chaldyshev, V. N. Nevedomsky, M. A. Yagovkina, V. V. Preobrazhenskii, M. A. Putyato, and B. R. Semyagin, Acta Crystallogr., Sect. B: Struct. Sci. 69, 30 (2013).

    Article  Google Scholar 

  13. G. M. Martin, Appl. Phys. Lett. 39, 9 (1981).

    Article  MATH  Google Scholar 

  14. N. A. Bert, V. V. Chaldyshev, A. A. Suvorova, V. V. Preobrazhenskii, M. A. Putyato, B. R. Semyagin, and P. Werner, Appl. Phys. Lett. 74, 1588 (1999).

    Article  ADS  Google Scholar 

  15. V. V. Chaldyshev, N. A. Bert, A. E. Romanov, A. A. Suvorova, A. L. Kolesnikova, V. V. Preobrazhenskii, M. A. Putyato, B. R. Semyagin, P. Werner, N. Zakharov, and A. Claverie, Appl. Phys. Lett. 80, 377 (2002).

    Article  ADS  Google Scholar 

  16. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).

    Google Scholar 

  17. Yu. A. Goldberg and N. M. Schmidt, Handbook Series on Semiconductor Parameters, Ed. by M. Levinshtein, S. Rumyantsev, and M. Shur (World Scientific, London (1999), Vol. 2, pp. 62–88.

  18. Yu. F. Biryulin, N. V. Ganina, M. G. Mil’vidskii, V. V. Chaldyshev, and Yu. V. Shmartsev, Sov. Phys. Semicond. 17(1), 68 (1983).

    Google Scholar 

  19. S. Adachi, J. Appl. Phys. 58, R1 (1985).

    Article  ADS  Google Scholar 

  20. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, New York, 2007; Regular and Chaotic Dynamics, Moscow, 2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Chaldyshev.

Additional information

Original Russian Text © V.I. Ushanov, V.V. Chaldyshev, N.D. Il’inskaya, N.M. Lebedeva, M.A. Yagovkina, V.V. Preobrazhenskii, M.A. Putyato, B.R. Semyagin, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 10, pp. 1891–1895.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ushanov, V.I., Chaldyshev, V.V., Il’inskaya, N.D. et al. Fröhlich resonance in the AsSb/AlGaAs system. Phys. Solid State 56, 1952–1956 (2014). https://doi.org/10.1134/S106378341410031X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341410031X

Keywords

Navigation