Skip to main content
Log in

Inverse opal based on a polymer filler and transformation of its optical characteristics

  • Optical Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Opal-like photonic crystals based on opal and inverse opal, which exhibit shifts of selective reflection bands toward both the long-wavelength and short-wavelength ranges with respect to the diffraction band of the initial opal consisting of SiO2 spheres, have been grown. The contributions from the skeletons forming three-dimensional periodic structures and from the fillers to the spectral position of diffraction bands have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. V. Sanders, Nature (London) 204, 1151 (1964).

    Article  ADS  Google Scholar 

  2. V. N. Bogomolov, Sov. Phys.—Usp. 21(1), 77 (1978).

    Article  ADS  Google Scholar 

  3. R. Biswas, C. T. Chan, M. Sigalas, C. M. Soukoulis, and K. M. Ho, in Photonic Band Gap Materials, Ed. by C. M. Soukoulis (Kluwer, Dordrecht, 1996), p. 23.

  4. V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 55, 7619 (1997).

    Article  Google Scholar 

  5. T. F. Krauss, IEE Proc. Optoelectron. 145, 372 (1998).

    Article  Google Scholar 

  6. H. Miguez, F. Meseguer, C. Lopez, F. Lopez-Tejeira, and J. Sanchez-Deheza, Adv. Mater. (Weinheim) 13, 393 (2001).

    Article  Google Scholar 

  7. M. Aloshyna, S. Sivakumar, M. Venkataramanan, A. G. Brolo, and F. C. J. M. van Veggel, J. Phys. Chem. 111, 4047 (2007).

    Google Scholar 

  8. S. Kim, A. N. Mitropoulos, J. D. Spitzberg, H. Tao, D. L. Kaplan, and F. G. Omenetto, Nat. Photonics 6, 818 (2012).

    Article  ADS  Google Scholar 

  9. V. G. Golubev, V. A. Kosobukin, D. A. Kurdyukov, A. V. Medvedev, and A. B. Pevtsov, Semiconductors 35(6), 680 (2001).

    Article  ADS  Google Scholar 

  10. V. G. Ral’chenko, D. N. Sovyk, A. P. Bol’shakov, A. A. Khomich, I. I. Vlasov, D. A. Kurdyukov, V. G. Golubev, and A. A. Zakhidov, Phys. Solid State 53(6), 1131 (2011).

    Article  ADS  Google Scholar 

  11. P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, Chem. Mater. 11, 2132 (1999).

    Article  Google Scholar 

  12. V. M. Masalov, K. A. Aldushin, P. V. Dolganov, and G. A. Emel’chenko, Phys. Low-Dimens. Struct., Nos. 5/6, 45 (2001).

    Google Scholar 

  13. B. G. Prevo and O. D. Velev, Langmuir 20, 2099 (2004).

    Article  Google Scholar 

  14. N. D. Denkov, D. Velev, P. A. Kralchevsky, I. B. Ivanov, J. H. Yoshimura, and K. T. Nagayama, Langmuir 8, 3183 (1992).

    Article  Google Scholar 

  15. A. A. Chabanov, Y. Jun, and D. J. Norris, Appl. Phys. Lett. 84, 3573 (2004).

    Article  ADS  Google Scholar 

  16. W. Stober, A. Fink, and E. Bohn, J. Colloid. Interface Sci. 26, 62 (1968).

    Article  Google Scholar 

  17. V. M. Masalov, N. S. Sukhinina, and G. A. Emel’chenko, Phys. Solid State 53(6), 1135 (2011).

    Article  ADS  Google Scholar 

  18. E. N. Samarov, A. D. Mokrushin, V. M. Masalov, G. E. Abrosimova, and G. A. Emel’chenko, Phys. Solid State 48(7), 1280 (2006).

    Article  ADS  Google Scholar 

  19. I. I. Bardyshev, A. D. Mokrushin, A. A. Pribylov, E. N. Samarov, V. M. Masalov, I. A. Karpov, and G. A. Emel’chenko, Colloid J. 68(1), 20 (2006).

    Article  Google Scholar 

  20. P. J. Darragh, A. J. Gaskin, B. C. Terrell, and J. V. San- ders, Nature (London) 209, 13 (1966).

    Article  ADS  Google Scholar 

  21. J. B. Jones and E. R. Segnit, Mineral. Mag. 37, 357 (1969).

    Article  Google Scholar 

  22. V. N. Bogomolov, D. A. Kurdyukov, A. V. Prokof’ev, and S. M. Samoilovich, JETP Lett. 63(7), 520 (1996).

    Article  ADS  Google Scholar 

  23. I. A. Karpov, E. N. Samarov, V. M. Masalov, S. I. Bozhko, and G. A. Emel’chenko, Phys. Solid State 47(2), 347 (2005).

    Article  ADS  Google Scholar 

  24. G. H. Bogush and C. F. Zukoski IV, J. Colloid. Interface Sci. 142, 19 (1991).

    Article  Google Scholar 

  25. V. M. Masalov, N. S. Sukhinina, E. A. Kudrenko, and G. A. Emelchenko, Nanotechnology 22, 275718 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Masalov.

Additional information

Original Russian Text © P.V. Dolganov, V.M. Masalov, N.S. Sukhinina, V.K. Dolganov, G.A. Emel’chenko, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 4, pp. 717–721.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolganov, P.V., Masalov, V.M., Sukhinina, N.S. et al. Inverse opal based on a polymer filler and transformation of its optical characteristics. Phys. Solid State 56, 746–750 (2014). https://doi.org/10.1134/S1063783414040088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414040088

Keywords

Navigation