Skip to main content
Log in

Temperature hysteresis of magnetic phase transitions in Tb1 − x Ce x Mn2O5 (x = 0, 0.20, 0.25)

  • Magnetism and Polarized Neutrons
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The temperature evolution of the magnetic structure of multiferroics Tb1 − x Ce x Mn2O5 (x = 0, 0.20, 0.25) has been investigated using the neutron scattering methods. It has been found that, despite the qualitative similarity of the magnetic states and the series of phase transitions for pure TbMn2O5 (TMO) and doped crystals Tb1 − x Ce x Mn2O5 (TCMO, x = 0.20 and 0.25), there are significant differences in their properties. In contrast to TMO, where there are three magnetic phases, TCMO can include two magnetic phases that coexist in a wide temperature range and exhibit a rather wide temperature hysteresis. One of these phases with wave vector k 1 = (0.5, 0, k z1), k z1 = 0.25, is commensurate and arises at temperatures below T N ∼ 39 K (for x = 0.2) and T N ∼ 38 K (x = 0.25). The second phase is incommensurate with wave vector k 2 = (1/2, 0, k z2), k z2 = 0.256(2), and appears upon cooling at T = 21 K (x = 0.2) and T = 19 K (x = 0.25). Upon further cooling to 16 K, the component k z2 increases to 0.292(2) and then remains constant. The component k z1 increases to the value of 0.280(2) upon cooling in the range from 15 to 10 K and then remains constant down to 1.5 K. With an increase in the temperature, the components k z1 and k z2 undergo reverse changes to their initial values, but these changes occur at temperatures 7 K higher than those observed with a decrease in the temperature. For TMO, two phases also coexist, but the temperature hysteresis in this case is considerably smaller than for TCMO. This is explained by different densities of domain walls and different sizes of domains in pure and doped crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Kagomiya, K. Kohn, and T. Uchiyama, Ferroelectrics 280, 131 (2002).

    Article  Google Scholar 

  2. G. R. Blake, L. C. Chapon, P. G. Radaelli, S. Park, N. Hur, S-W. Cheong, and J. Rodrigues-Carvajal, Phys. Rev. B: Condens. Matter 71, 214402 (2005).

    Article  ADS  Google Scholar 

  3. D. Higashiyama, S. Miyasaka, and Y. Tokura, Phys. Rev. B: Condens. Matter 72, 064421 (2005).

    Article  ADS  Google Scholar 

  4. Y. Bodenthin, U. Staub, M. García-Fernández, M. Janoschek, J. Schlappa, E. I. Golovenchits, V. A. Sanina, and S. G. Lushnikov, Phys. Rev. Lett. 100, 027201 (2008).

    Article  ADS  Google Scholar 

  5. L. C. Chapon, G. R. Blake, M. J. Gutmann, S. Park, N. Hur, P. G. Radaelli, and S.-W. Cheong, Phys. Rev. Lett. 93, 177402 (2004).

    Article  ADS  Google Scholar 

  6. K. Saito and K. Kohn, J. Phys.: Condens. Matter 7, 2855 (1995).

    ADS  Google Scholar 

  7. E. I. Golovenchits, N. V. Morozov, V. A. Sanina, and L. M. Sapozhnikova, Sov. Phys. Solid State 34(1), 56 (1992).

    Google Scholar 

  8. J. A. Alonso, M. T. Casais, M. J. Martinez-Lope, J. L. Martinez, and M. T. Fernandez-Diaz, J. Phys.: Condens. Matter 9, 8515 (1997).

    ADS  Google Scholar 

  9. J. Van den Brink and D. I. Khomskii, J. Phys.: Condens. Matter 20, 434217 (2008).

    Google Scholar 

  10. R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751 (1976).

    Article  ADS  Google Scholar 

  11. Z. H. Sun, B. L. Cheng, S. Dai, K. J. Jin, Y. L. Zhou, Y. B. Lu, Z. H. Chen, and G. Z. Yang, J. Appl. Phys. 99, 084105 (2006).

    Article  ADS  Google Scholar 

  12. L. P. Gor’kov, Phys.-Usp. 41(6), 589 (1998).

    Article  Google Scholar 

  13. M. Yu. Kagan and K. I. Kugel’, Phys.-Usp. 44(6), 553 (2001).

    Article  ADS  Google Scholar 

  14. V. A. Sanina, E. I. Golovenchits, V. G. Zalesskii, S. G. Lushnikov, M. P. Scheglov, S. N. Gvasaliya, A. Savvinov, R. S. Katiyar, H. Kawaji, and T. Atake, Phys. Rev. B: Condens. Matter 80, 224401 (2009).

    Article  ADS  Google Scholar 

  15. V. A. Sanina, E. I. Golovenchits, V. G. Zalesskii, and M. P. Scheglov, J. Phys.: Condens. Matter 23, 456003 (2011).

    ADS  Google Scholar 

  16. V. A. Sanina, E. I. Golovenchits, and V. G. Zalesskii, J. Phys.: Condens. Matter 24, 346002 (2012).

    Google Scholar 

  17. V. A. Sanina, L. M. Sapozhnikova, E. I. Golovenchits, and N. V. Morozov, Sov. Phys. Solid State 30(10), 1736 (1988).

    Google Scholar 

  18. I. Urcelay, J. L. Garcia-Munoz, I. V. Golosovsky, I. A. Zobkalo, and E. Ressouche (in press).

  19. C. Wilkinson, P. J. Brown, and T. Chatterji, Phys. Rev. B: Condens. Matter 84, 224422 (2011).

    Article  ADS  Google Scholar 

  20. J. Koo, S. Ji, T.-H. Jang, Y. H. Jeong, K.-B. Lee, T. Y. Koo, S. A. Kim, and C.-H. Lee, J. Korean Phys. Soc. 51, 562 (2007).

    Article  ADS  Google Scholar 

  21. Y. Noda, H. Kimura, M. Fukunaga, S. Kobayashi, I. Kagomiya, and K. Kohn, J. Phys.: Condens. Matter 20, 434206 (2008).

    ADS  Google Scholar 

  22. P. G. Radaelli and L. C. Chapon, J. Phys.: Condens. Matter 20, 434213 (2008).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Zobkalo.

Additional information

Original Russian Text © I.A. Zobkalo, S.V. Gavrilov, V.A. Sanina, E.I. Golovenchits, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 1, pp. 57–62.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zobkalo, I.A., Gavrilov, S.V., Sanina, V.A. et al. Temperature hysteresis of magnetic phase transitions in Tb1 − x Ce x Mn2O5 (x = 0, 0.20, 0.25). Phys. Solid State 56, 51–56 (2014). https://doi.org/10.1134/S1063783414010405

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414010405

Keywords

Navigation