Skip to main content
Log in

Electronic structure and ground state parameters of Ru1 − x Me x Al refractory alloys

  • Metals and Superconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The electronic structure and ground state parameters of B2 RuAl-based refractory alloys have been investigated in the framework of the density functional theory using the exact muffin-tin orbital method in combination with the coherent potential approximation. It has been demonstrated that the number of states at the Fermi level for the Ru1 − x Me x Al alloys as a function of the alloying metal content has a minimum, which indicates a change in the Fermi surface topology and the presence of specific features in the behavior of elastic constants. It has been concluded that the electronic structure of the alloys can be described in terms of the rigid band model. The nonlinear variations of the lattice parameters of the alloys has been explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. L. Fleischer, J. Matter. Sci. 22, 2281 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  2. R. Fleischer, R. Gilmore, and R. Zabala, Acta Metall. 37, 2801 (1986).

    Google Scholar 

  3. R. L. Fleischer and A. I. Taub, J. Met. 41, 8 (1989).

    Google Scholar 

  4. D. Anton, D. Shah, D. Duhl, and A. Giamei, J. Met. 41, 12 (1989).

    Google Scholar 

  5. R. Fleischer and R. Zabala, Metall. Mater. Trans. A 21, 2709 (1990).

    Article  ADS  Google Scholar 

  6. R. Fleischer, in Intermetallic Compounds, Ed. by J. Westbrook and R. Fleischer (Wiley, New York 1994), Vol. 2, p. 237.

    Google Scholar 

  7. Binary Alloy Phase Diagrams, Ed. by T. B. Massalski, H. Baker, L. H. Bennett, and J. L. Murray (ASM International, Materials Park, OH, United States, 1986).

    Google Scholar 

  8. R. Fleischer and D. McKee, Metall. Mater. Trans. A 24, 759 (1993).

    Article  ADS  Google Scholar 

  9. R. Fleischer, R. Field, and C. Mriant, Metall. Mater. Trans. A 22, 403 (1991).

    Article  ADS  Google Scholar 

  10. D. C. Lu and T. M. Pollock, Acta Mater. 47, 1035 (1999).

    Article  Google Scholar 

  11. W. Wopershow and C. Raub, Metallwiss. Tech. 33, 736 (1979).

    Google Scholar 

  12. E. G. Smith and C. I. Lang, Scr. Metall. Mater. 33, 1225 (1995).

    Article  Google Scholar 

  13. S. A. Anderson and C. I. Lang, Scr. Mater. 38, 493 (1998).

    Article  Google Scholar 

  14. F. Soldera, N. Ilić, S. Brännström, I. Barrientos, H. Gobran, and F. Mücklich, Oxid. Met. 59, 529 (2003).

    Article  Google Scholar 

  15. F. Mücklich and N. Ilić, Intermetallics 13, 5 (2005).

    Article  Google Scholar 

  16. I. J. Horner, N. Hall, L. A. Cornish, M. J. Witcomb, M. B. Cortie, and T. D. Boniface, J. Alloys Compd. 264, 173 (1998).

    Article  Google Scholar 

  17. I. M. Wolff and G. Sauthoff, Acta Mater. 45, 2949 (1997).

    Article  Google Scholar 

  18. P. Gargano, H. Mosca, G. Bozzolo, and R. D. Noebe, Scr. Mater. 48, 695 (2003).

    Article  Google Scholar 

  19. A. Sabariz and G. Taylor, Mater. Res. Soc. Symp. Proc. 460, 611 (1997).

    Google Scholar 

  20. S. Chakravorty and D. West, Scr. Metall. 19, 1355 (1985).

    Article  Google Scholar 

  21. S. Chakravorty and D. West, J. Mater. Sci. 21, 2721 (1986).

    Article  ADS  Google Scholar 

  22. K.W. Liu, F. Mücklich, W. Pitschke, R. Birringer, and K. Wetzig, Mater. Sci. Eng., A 313, 187 (2001).

    Article  Google Scholar 

  23. R. L. Fleischer, Acta Metall. Mater. 41, 863 (1993).

    Article  Google Scholar 

  24. R. L. Fleischer, Acta Metall. Mater. 41, 1197 (1993).

    Article  Google Scholar 

  25. P. J. Hill, L. A. Cornish, and M. J. Witcomb, J. Alloys Compd. 280, 240 (1998).

    Article  Google Scholar 

  26. L. Cornish, M. Witcomb, P. Hill, and I. Horner, S. Afr. J. Sci. 95, 517 (1999).

    Google Scholar 

  27. R. Fleischer, J. Mater. Sci. Lett. 72, 525 (1988).

    Article  Google Scholar 

  28. G. H. Bozzolo, R. D. Noebe, and C. Amador, Intermetallics 10, 149 (2002).

    Article  Google Scholar 

  29. I. D. Bleskov, E. A. Smirnova, Y. K. Bekilov, P. A. Korzhavyi, B. Johansson, M. Katsnelson, L. Vitos, I. A. Abrikosov, and E. I. Isaev, Appl. Phys. Lett. 94, 161901 (2009).

    Article  ADS  Google Scholar 

  30. L. Vitos, Computational Quantum Mechanics for Materials Engineers (Springer, London, 2007).

    Google Scholar 

  31. L. Vitos, I. A. Abrikosov, and B. Johansson, Phys. Rev. Lett. 87, 156401 (2001).

    Article  ADS  Google Scholar 

  32. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  33. O. L. Anderson, Equations of State of Solids for Geophysics and Ceramic Science (Oxford University Press, Oxford, 1995).

    Google Scholar 

  34. E. V. Shalaeva, N. I. Medvedeva, and I. R. Shein, Fiz. Tverd. Tela (St. Petersburg). 49(7), 1195 (2007) [Phys. Solid State 49 (7), 1253 (2007)].

    Google Scholar 

  35. C. Jiang and B. Gleeson, Acta Mater. 54, 4101 (2006).

    Article  Google Scholar 

  36. T. Abe, C. Kocer, M. Ode, H. Murakami, Y. Yamabe- Mitarai, K. Hashimoto, and H. Onodera, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 32, 686 (2008).

    Google Scholar 

  37. S. H. Yang, M. J. Mehl, D. A. Papaconstantopoulos, and M. B. Scott, J. Phys.: Condens. Matter 14, 1895 (2002).

    Article  ADS  Google Scholar 

  38. W. Obrowski, Naturwissenschaften 47, 14 (1960).

    Article  ADS  Google Scholar 

  39. M. Mehl, B. Klein, and D. A. Papaconstantopoulos, in Intermetallic Compounds: Principles and Practice, Ed. by J. Westbrook and R. Fleischer (Wiley, London, 1995), Vol. 1, p. 195.

    Google Scholar 

  40. R. L. Fleischer, ISIJ Int. 31, 1186 (1991).

    Article  Google Scholar 

  41. D. Nguyen-Manh and D. G. Pettifor, Intermetallics 7, 1095 (1999).

    Article  Google Scholar 

  42. W. Lin, J.-H. Xu, and A. Freeman, J. Mater. Res. 7, 592 (1992).

    Article  ADS  Google Scholar 

  43. G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (Massachusetts Institute of Technology Press, Cambridge, MA, United States, 1971).

    Google Scholar 

  44. W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys (Pergamon, New York, 1967).

    Google Scholar 

  45. T. Li, J. W. Morris, and D. C. Chrzan, Phys. Rev. B: Condens. Matter 70, 054107 (2004).

    ADS  Google Scholar 

  46. C. J. Smithells, Metals Reference Book (Butterworths, London, 1962), Vol. 2.

    Google Scholar 

  47. P. Villars and L. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (ASM, Metals Park, OH, United States, 1985).

    Google Scholar 

  48. N. I. Medvedeva, Y. N. Gornostyrev, D. L. Novikov, O.N. Mryasov, and A. J. Freeman, Acta Mater. 46, 3433 (1998).

    Article  Google Scholar 

  49. V. Moruzzi and P. M. Marcus, Phys. Rev. B: Condens. Matter 47, 7878 (1993).

    ADS  Google Scholar 

  50. H. Leamy, Acta Metall. 15, 1839 (1967).

    Article  Google Scholar 

  51. P. Esslinger and K. Schubert, Z. Metallkd. 48, 126 (1957).

    Google Scholar 

  52. K. Axler and R. Roof, in Advances in X-Ray Analysis (Plenum, New York, 1986), Vol. 29, p. 333.

    Google Scholar 

  53. H. Schulz, K. Ritapal, W. Bronger, and W. Klemm, Z. Anorg. Allg. Chem. 357, 299 (1968).

    Article  Google Scholar 

  54. A. Chiba, T. Ono, X. G. Li, and S. Takahashi, Intermetallics 6, 35 (1998).

    Article  Google Scholar 

  55. L. Hedin and B. I. Lundqvist, J. Phys. C: Solid State Phys. 4, 2064 (1971).

    Article  ADS  Google Scholar 

  56. P. Mohn, C. Persson, P. Blaha, K. Schwarz, P. Novák, and H. Eschrig, Phys. Rev. Lett. 87, 196401 (2001).

    Article  ADS  Google Scholar 

  57. B. Meyer, V. Schott, and M. Fähnle, Phys. Rev. B: Condens. Matter 58, R14673 (1998).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Bleskov.

Additional information

Original Russian Text © I.D. Bleskov, É.I. Isaev, Yu.Kh. Vekilov, 2010, published in Fizika Tverdogo Tela, 2010, Vol. 52, No. 9, pp. 1681–1687.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bleskov, I.D., Isaev, É.I. & Vekilov, Y.K. Electronic structure and ground state parameters of Ru1 − x Me x Al refractory alloys. Phys. Solid State 52, 1803–1809 (2010). https://doi.org/10.1134/S1063783410090039

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783410090039

Keywords

Navigation