Skip to main content
Log in

Exciton-polariton absorption in periodic and disordered quantum-well chains

  • Low-Dimensional Systems and Surface Physics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The exciton-polariton transfer and absorption in regular and disordered structures with a finite number of quantum wells are studied theoretically. The transfer matrix method is invoked in the exciton resonance region to calculate the reflectivity, transmissivity, and absorptivity spectra, as well as the integrated absorptivity as a function of the γ/Γ0 ratio of the parameters of nonradiative and radiative damping of quasi-two-dimensional excitons. It is shown that the integrated absorptivity as a function of γ (temperature) follows a universal pattern, more specifically, it increases monotonically from zero at γ = 0 to saturate at γ/Γ0 ≫ 1. Because the exciton-polariton absorption being single mode, the integrated absorptivity in Bragg quantum-well structures is substantially lower than that in short-period structures, in which absorption involves the whole spectral multitude of modes. The intrawell disorder associated with fluctuations in the frequencies of exciton excitation in quantum wells enhances the integrated absorptivity to the level typical of light absorption with no resonance among excitons of different quantum wells. The interwell disorder originating from fluctuations in quantum-well separation likewise leads to an increase in the integrated absorptivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Davydov, Theory of Solid State (Nauka, Moscow, 1976) [in Russian]; M. Crescenzi, G. Harbeke, and E. Tosatti, Solid State Commun. 32, 777 (1979); N. N. Akhmediev, Zh. Éksp. Teor. Fiz. 79 (4), 1534 (1980) [Sov. Phys. JETP 52 (4), 773 (1980); J. S. Nkoma. Phys. Status Solidi B 97, 657 (1980); G. Battaglia, A. Quattropani, and P. Schwendimann, Phys. Rev. B: Condens. Matter 34, 8258 (1986).

    Google Scholar 

  2. F. I. Kreĭngol’d and V. L. Makarov, Pis’ma Zh. Éksp. Teor. Fiz. 20(7), 441 (1974) [JETP Lett. 20 (7), 201 (1974)]; J. Voigt, Phys. Status Solidi B 64, 549 (1974); N. N. Akhmediev, G. P. Golubev, V. S. Dneprovskiĭ, and E. A. Zhukov, Fiz. Tverd. Tela (Leningrad) 25 (7), 2225 (1983) [Sov. Phys. Solid State 25 (7), 1284 (1983)]; G. N. Aliev, O. S. Koshchug, and R. P. Seisyan, Fiz. Tverd. Tela (St. Petersburg) 36 (2), 373 (1994) [Phys. Solid State 36 (2), 203 (1994)].

    Google Scholar 

  3. R. Loudon, J. Phys. A: Gen. Phys. 3, 233 (1970).

    Article  ADS  Google Scholar 

  4. V. A. Kosobukin, R. P. Seisyan, and S. A. Vaganov, Semicond. Sci. Technol. 8, 1235 (1993).

    Article  ADS  Google Scholar 

  5. W. Z. Shen, S. C. Shen, W. G. Tang, S. M. Wang, and T. G. Andersson, J. Appl. Phys. 78, 1178 (1995).

    Article  ADS  Google Scholar 

  6. G. N. Aliev, V. A. Kosobukin, N. V. Luk’yanova, M. M. Moiseeva, R. P. Seisyan, H. Gibbs, and G. Khitrova, Inst. Phys. Conf. Ser., No. 155 (Chap. 2), 165 (1997).

  7. R. P. Seisyan, V. A. Kosobukin, S. A. Vaganov, M. S. Markosov, T. S. Shamirzaev, K. S. Zhuravlev, A. K. Bakarov, and A. I. Toropov, Phys. Status Solidi C 2, 900 (2005).

    Article  ADS  Google Scholar 

  8. R. P. Seisyan, V. A. Kosobukin, and M. S. Markosov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 40(11), 1321 (2006) [Semiconductors 40 (11), 1287 (2006)].

    Google Scholar 

  9. V. A. Kosobukin and M. M. Moiseeva, Fiz. Tverd. Tela (St. Petersburg) 37(12), 3694 (1995) [Phys. Solid State 37 (12), 2036 (1995)].

    Google Scholar 

  10. V. A. Kosobukin, Fiz. Tverd. Tela (St. Petersburg) 40(5), 824 (1998) [Phys. Solid State 40 (5), 758 (1998)].

    Google Scholar 

  11. V. A. Kosobukin, Phys. Status Solidi B 108, 271 (1998).

    Article  Google Scholar 

  12. E. L. Ivchenko, A. I. Nesvizhskii, and S. Jorda, Fiz. Tverd. Tela (St. Petersburg) 36(7), 2118 (1994) [Phys. Solid State 36 (7), 1156 (1994)].

    Google Scholar 

  13. Y. Merle d’Aubigné, A. Wasiela, H. Mariette, and T. Dietl, Phys. Rev. B: Condens. Matter 54, 14003 (1996).

    Google Scholar 

  14. E. L. Ivchenko, V. P. Kochereshko, A. V. Platonov, D. R. Yakovlev, A. Waag, W. Ossau, and G. Landwehr, Fiz. Tverd. Tela (St. Petersburg) 39(11), 2072 (1997) [Phys. Solid State 39 (11) 1852 (1997)].

    Google Scholar 

  15. E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures (Alpha Science International, Harrow, United Kingdom, 2005).

    Google Scholar 

  16. E. L. Ivchenko, M. M. Voronov, M. V. Erementchouk, L. I. Deych, and A. A. Lisyansky, Phys. Rev. B: Condens. Matter 70, 195 106 (2004).

    Google Scholar 

  17. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).

    MATH  Google Scholar 

  18. V. A. Kosobukin, Fiz. Tverd. Tela (St. Petersburg) 45(6), 1091 (2003) [Phys. Solid State 45 (6), 1145 (2003)].

    Google Scholar 

  19. Yu. N. Demkov and V. N. Ostrovskii, Zero-Range Potentials and Their Applications in Atomic Physics (Leningrad State University, Leningrad, 1975; Plenum, New York, 1988).

    Google Scholar 

  20. R. L. Greene, K. K. Bajaj, and D. E. Phelps, Phys. Rev. B: Condens. Matter 29, 1807 (1984).

    ADS  Google Scholar 

  21. D. S. Citrin, Phys. Rev. B: Condens. Matter 47, 3832 (1993).

    ADS  Google Scholar 

  22. I. M. Lifshitz, S. A. Gredeskul, and L. A. Pastur, Introduction to the Theory of Disordered Systems (Nauka, Moscow, 1982; Wiley, New York, 1988).

    Google Scholar 

  23. M. R. Vladimirova, E. L. Ivchenko, and A. V. Kavokin, Fiz. Tekh. Poluprovodn. (St. Petersburg) 32(1), 101 (1998) [Semiconductors 32 (1), 90 (1998)].

    Google Scholar 

  24. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Nauka, Moscow, 1978; Springer, Berlin, 1984).

    Google Scholar 

  25. S. Rudin, T. L. Reinecke, and B. Segall, Phys. Rev. B: Condens. Matter 42, 11218 (1990).

    Google Scholar 

  26. V. Srinivas, J. Hryniewicz, Y. J. Chen, and C. E. C. Wood, Phys. Rev. B: Condens. Matter 46, 10193 (1992).

    Google Scholar 

  27. L. C. Andreani, G. Panzarini, A. V. Kavokin, and M. R. Vladimirova, Phys. Rev. B: Condens. Matter 57, 4670 (1998).

    ADS  Google Scholar 

  28. G. Malpuech and A. Kavokin, Semicond. Sci. Technol. 14, 1031 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kosobukin.

Additional information

Original Russian Text © V.A. Kosobukin, A.N. Poddubnyĭ, 2007, published in Fizika Tverdogo Tela, 2007, Vol. 49, No. 10, pp. 1883–1892.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosobukin, V.A., Poddubnyĭ, A.N. Exciton-polariton absorption in periodic and disordered quantum-well chains. Phys. Solid State 49, 1977–1987 (2007). https://doi.org/10.1134/S1063783407100289

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783407100289

PACS numbers

Navigation