Skip to main content
Log in

Mechanism of strain hardening and dislocation-structure formation in metals subjected to severe plastic deformation

  • Defects, Dislocations, and Physics of Strength
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The equations of dislocation kinetics are used to theoretically analyze the mechanism of strain hardening and the formation of fragmented dislocation structures in metals at large plastic strains. A quantitative analysis of the available data on aluminum and an aluminum-magnesium alloy shows that strain hardening at large plastic strains and the formation of fragmented dislocation structures are related to the interaction and self-organization of geometrically necessary dislocations (GNDs). On the microscale, the source of the GNDs is a locally nonuniform plastic deformation induced by a dislocation-density gradient in dislocation-cell boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Gubicza, N. Q. Chinh, Z. Horita, and T. G. Langdon, Mater. Sci. Eng. A 387/389, 55 (2004).

    Google Scholar 

  2. Q. Liu, X. Huang, D. J. Lloyd, and N. Hansen, Acta Mater. 50(15), 3789 (2002).

    Article  Google Scholar 

  3. A. Goloborodko, O. Sitdikov, R. Kaibyshev, H. Miura, and T. Sakai, Maer. Sci. Eng. A 381, 121 (2004).

    Google Scholar 

  4. A. Belyakov, T. Saki, H. Miura, and K. Tsuzaki, Philos. Mag. A 81(11), 2629 (2001).

    Google Scholar 

  5. R. Z. Valiev and I. V. Aleksandrov, Nonostructured Materials Produced by Severe Plastic Deformation (Logos, Moscow, 2002) [in Russian].

    Google Scholar 

  6. D. A. Hughes and N. Hansen, Acta Mater. 48(11), 2958 (2000).

    Article  Google Scholar 

  7. N. Hansen, Scr. Mater. 51(8), 801 (2004).

    Google Scholar 

  8. G. A. Malygin, Fiz. Tverd. Tela (St. Petersburg) 37(8), 2281 (1995) [Phys. Solid State 37 (8), 1248 (19950)].

    Google Scholar 

  9. R. A. Masumura, P. M. Hazledine, and C. S. Pande, Acta Mater. 46(13), 4527 (1998).

    Article  Google Scholar 

  10. G. Langford and M. Cohen, Metall. Trans. A 6(4), 901 (1975).

    Google Scholar 

  11. G. A. Malygin, Fiz. Tverd. Tela (St. Petersburg) 46(11), 1968 (2004) [Phys. Solid State 46 (11), 2035 (2004)].

    Google Scholar 

  12. A. A. Popov, I. Yu. Pyshmintsev, S. L. Demakov, A. G. Illarinov, T. C. Lowe, A. V. Sergeyeva, and R. Z. Valiev, Scr. Mater. 37(7), 1089 (1997).

    Article  Google Scholar 

  13. E. V. Kozlov, A. N. Zhdanov, N. A. Popova, E. E. Pekarskaya, and N. A. Koneva, Mater. Sci. Eng. A 387/389, 789 (2004).

    Google Scholar 

  14. Minoru Furukawa, Yoshinori Iwahashi, Zenji Horita, Minoru Nemoto, Nikolai K. Tsenev, Ruslan Z. Valiev, and Terence G. Langdon, Acta Mater. 45(11), 4751 (1997).

    Article  Google Scholar 

  15. M. M. Myshlyaev and S. Yu. Mironov, Fiz. Tverd. Tela (St. Petersburg) 44(4), 711 (2002) [Phys. Solid State 44 (4), 738 (2002)].

    Google Scholar 

  16. M. M. Myshlyaev, M. A. Prokunin, and V. V. Shpeizman, Fiz. Tverd. Tela (St. Petersburg) 43(5), 833 (2001) [Phys. Solid State 43 (5), 865 (2001)].

    Google Scholar 

  17. R. K. Islamgaliev, N. F. Yunusova, R. Z. Valiev N. K. Tsenev, V. N. Perevezentsev, and T. G. Langdon, Scr. Mater. 49(5), 467 (2003).

    Article  Google Scholar 

  18. G. A. Malygin, Fiz. Tverd. Tela (St. Petersburg) 43(10), 1832 (2001) [Phys. Solid State 43 (10), 1909 (2001)].

    Google Scholar 

  19. G. A. Malygin, Fiz. Tverd. Tela (St. Petersburg) 44(11), 1979 (2002) [Phys. Solid State 44 (11), 2072 (2002)].

    Google Scholar 

  20. G. A. Malygin, Phys. Status Solidi A 119(2), 423 (1990).

    Google Scholar 

  21. D. A. Hughes, Q. Liu, D. C. Chrzan, and N. Hansen, Acta Mater. 45(1), 105 (1997).

    Article  Google Scholar 

  22. A. Godfrey and D. A. Hughes, Acta Mater. 48(8), 1897 (2000).

    Article  Google Scholar 

  23. D. A. Hughes, Scr. Mater. 47(10), 697 (2002).

    Article  Google Scholar 

  24. A. Godfrey and D. A. Hughes, Scr. Mater. 51(8), 831 (2004).

    Article  Google Scholar 

  25. G. A. Malygin, Usp. Fiz. Nauk 169(9), 979 (1999) [Phys. Usp. 42 (9), 887 (1999)].

    Google Scholar 

  26. Q. Liu, D. J. Jensen, and N. Hansen, Acta Mater. 46(16), 5819 (1998).

    Google Scholar 

  27. M. F. Ashby, Philos. Mag. 21, 170; Philos. Mag. 21, 399 (1970).

    Google Scholar 

  28. A. Vorhauer and R. Rippan, Scr. Mater. 51(9), 921 (2004).

    Article  Google Scholar 

  29. N. Fleck, G. M. Muller, M. F. Ashby, and J. W. Hutchinson, Acta Metall. Mater. 42(2), 475 (1994).

    Google Scholar 

  30. G. Winther, D. J. Jensen, and N. Hansen, Acta Mater. 45(12), 5059 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.A. Malygin, 2006, published in Fizika Tverdogo Tela, 2006, Vol. 48, No. 4, pp. 651–657.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malygin, G.A. Mechanism of strain hardening and dislocation-structure formation in metals subjected to severe plastic deformation. Phys. Solid State 48, 693–699 (2006). https://doi.org/10.1134/S1063783406040123

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783406040123

PACS numbers

Navigation