Skip to main content
Log in

TCAD Simulation Study of Single-, Double-, and Triple-Material Gate Engineered Trigate FinFETs

  • PHYSICS OF SEMICONDUCTOR DEVICES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A detailed comparative performance analysis of the Trigate Fin Field Effect Transistor (FinFET) device with different structures such as Single-Material Gate (SMG) FinFET, Double-Material Gate (DMG) FinFET, and Triple-Material Gate (TMG) FinFET has been done. Silvaco Atlas Technology Computer-Aided Design (TCAD) tool is used to model the Trigate FinFET device structures and to characterize all the electrical parameters of the device. The simulation results confirm that TMG FinFET device structure shows better performance than SMG and DMG FinFET device structures, in terms of device electrical parameters such as surface potential, electric field, and drain current. Moreover, TMG FinFET device structure exhibits an excellent transconductance of 0.28 μA/V when compared with SMG FinFET (0.21 μA/V) and DMG FinFET (0.24 μA/V).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. Tsormpatzoglou, C. A. Dimitriadis, R. Clerc, G. Pananakakis, and G. Ghibaudo, IEEE Trans. Electron. Dev. 55, 2823 (2008).

    Google Scholar 

  2. P. Vimala and N. R. Nithin Kumar, J. Nano Res. 56, 19 (2019).

    Article  Google Scholar 

  3. P. Vimala, J. Nano-Electron. Phys. 10, 05015 (2018).

    Google Scholar 

  4. P. K. Pal, B. K. Kaushik, and S. Dasgupta, IEEE Trans. Electron. Dev. 62, 1105 (2015).

    Article  ADS  Google Scholar 

  5. C. Li, Y. Zhuang, and L. Zhang, in Proceedings of the IEEE International Conference EDSSC, Bangkok,2012.

  6. S. S. Gurpurneet Kaur, in Proceedings of the International Conference on Computing, Communication, and Automation,2017, p. 1569.

  7. Y. Morita, K. Fukuda, T. Mori, W. Mizubayashi, S. Migita, K. Endo, S. O’uchi, Y. X. Liu, M. Masahara, T. Matsukawa, and H. Ota, Jpn. J. Appl. Phys. 55, 04EB06 (2016).

    Article  Google Scholar 

  8. R. Das and S. Baishya, Microelectron. J. 75, 153 (2019).

    Article  Google Scholar 

  9. P. Vimala and N. R. Nithin Kumar, J. Nano Res. 58, 32 (2019).

    Article  Google Scholar 

  10. A. M. Pritha Banerjee, in Proceedings of the Conference on Devices for Integrated Circuit DevIC, Kalyani, India,2017, p. 437.

  11. B. B. Rajesh Saha, J. Nano Electron. Optoelectron. 13, 1 (2018).

    Google Scholar 

  12. M. Y. Sang-Hyeon Kim, IEEE Trans. Electron. Dev. 61, 1354 (2014).

    Article  ADS  Google Scholar 

  13. A. Tsiara, MSc Thesis (Aristotle Univ. of Thessaloniki, Greece, 2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Vimala.

Ethics declarations

The authors hereby confirm that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vimala, P., Arun Samuel, T.S. TCAD Simulation Study of Single-, Double-, and Triple-Material Gate Engineered Trigate FinFETs. Semiconductors 54, 501–505 (2020). https://doi.org/10.1134/S1063782620040211

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620040211

Keywords:

Navigation