Skip to main content
Log in

High-Efficiency Thermoelectric Single-Photon Detector Based on Lanthanum and Cerium Hexaborides

  • XVI INTERNATIONAL CONFERENCE  “THERMOELECTRICS AND THEIR APPLICATIONS–2018” (ISCTA 2018), ST. PETERSBURG, OCTOBER 8–12, 2018
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A design for a high-efficiency single-photon detector based on lanthanum and cerium hexaborides, which operates from the infrared to ultraviolet spectral ranges, is suggested. The results of computer simulations of heat transfer in the sensitive element of the detector upon the absorption of photons with energies of 0.5–4.13 eV are presented. To attain a high efficiency of the system of photon detection in the wavelength range from near infrared to ultraviolet, lanthanum hexaboride is proposed as the absorber and heat-sink material in the sensitive element. It is shown that a sensitive element of both single- and three-layer design made entirely of hexaborides will possess a gigahertz counting rate and a detection efficiency exceeding 90%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. L. You, Supercond. Sci. Technol. 31, 040503 (2018).

    Article  ADS  Google Scholar 

  2. A. Gulian, K. Wood, D. van Vechten, and G. Fritzdet, J. Mod. Opt. 51, 1467 (2004).

    Article  ADS  Google Scholar 

  3. A. Kuzanyan, V. Nikoghosyan, and A. Kuzanyan, Sens. Transduc. 191, 57 (2015).

    Google Scholar 

  4. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, Nat. Photon. 7, 210 (2013).

    Article  ADS  Google Scholar 

  5. W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, Sci. China—Phys. Mech. Astron. 60, 120314 (2017).

    Article  Google Scholar 

  6. A. S. Kuzanyan, A. A. Kuzanyan, V. R. Nikogosyan, V. N. Gurin, and M. P. Volkov, Semiconductors 51, 870 (2017).

    Article  ADS  Google Scholar 

  7. V. N. Gurin, M. M. Korsukova, M. G. Karin, K. K. Sidorin, I. A. Smirnov, and A. I. Shelykh, Sov. Phys. Solid State 22, 418 (1980).

    Google Scholar 

  8. H. Takeda, H. Kuno, and K. Adachi, J. Am. Ceram. Soc. 91, 2897 (2008).

    Article  Google Scholar 

  9. M. M. Korsukova, V. N. Gurin, Sh. Otani, and Y. Ishizava, Solid State Commun. 99, 215 (1996).

    Article  ADS  Google Scholar 

  10. K. Winzer, Solid State Commun. 16, 521 (1975).

    Article  ADS  Google Scholar 

  11. M. A. Anisimov, V. V. Glushkov, A. V. Bogach, S. V. Demishev, N. A. Samarin, S. Yu. Gavrilkin, K. V. Mitsen, N. Yu. Shitsevalova, A. V. Levchenko, V. B. Filippov, S. Gaboni, K. Flachbart, and N. E. Sluchanko, J. Exp. Theor. Phys. 116, 760 (2013).

    Article  ADS  Google Scholar 

  12. Y. Peysson, C. Ayache, and B. Salce, J. Magn. Magn. Mater. 59, 33 (1986).

    Article  ADS  Google Scholar 

  13. G. T. Furukawar, T. B. Douglasr, R. E. McCoske, Jr., and D. C. Ginnings, J. Res. Nat. Bureau Stand. 57, 67 (1956).

    Article  Google Scholar 

  14. http://www.phys.ufl.edu/ireu/IREU2013/pdf_reports/ Allen_Scheie_FinalReport.pdf.

  15. T. Fujita, M. Suzuki, T. Komatsubara, S. Kunii, T. Kasuya, and T. Ohtsuka, Solid State Commun. 35, 569 (1980).

    Article  ADS  Google Scholar 

  16. P. A. Popov, V. V. Novikov, A. A. Sidorov, and E. V. Maksimenko, Inorg. Mater. 43, 1187 (2007).

    Article  Google Scholar 

  17. D. A. Ditmars, S. Ishihara, S. S. Chang, G. Bernstein, and E. D. West, J. Res. Nat. Bureau Stand. 87, 159 (1982).

    Article  Google Scholar 

  18. R. Berman, E. L. Foster, and J. M. Ziman, Proc. R. Soc. London, Ser. A 231, 130 (1955).

    Article  ADS  Google Scholar 

  19. V. Petrosyan, V. Vardanyan, V. Kuzanyan, M. Konovalov, V. Gurin, and A. Kuzanyan, Solid State Sci. 14, 1653 (2012).

    Article  ADS  Google Scholar 

Download references

FUNDING

This study was supported by the State Committee on Science of the Ministry of Education and Science of the Republic of Armenia, project no. 18T-2F134.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Gurin.

Additional information

Translated by M. Skorikov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzanyan, A.S., Kuzanyan, A.A., Gurin, V.N. et al. High-Efficiency Thermoelectric Single-Photon Detector Based on Lanthanum and Cerium Hexaborides. Semiconductors 53, 682–685 (2019). https://doi.org/10.1134/S1063782619050130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619050130

Navigation