Skip to main content
Log in

Evolution of Micropits on Large Terraces of the Si(111) Surface during High-Temperature Annealing

  • SURFACES, INTERFACES, AND THIN FILMS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The transformation of micropits on large terraces of the Si(111) surface containing no vicinal atomic steps has been investigated by in situ ultrahigh-vacuum reflection electron microscopy upon thermal annealing of the substrate in the range of 1200–1400°C. A procedure for the formation of micropits on large terraces of the Si(111) surface with the application of focused-ion-beam (Ga+) technology has been proposed. It has been found that the micropit decay kinetics varies upon reaching the critical radius Rcrit, which is caused by the activation of nucleation of two-dimensional vacancy islands on the micropit bottom. A theoretical model describing variations in the lateral sizes of the micropit both before and after reaching Rcrit has been proposed. Based on analysis of the found temperature dependence of the nucleation frequencies of two-dimensional vacancy pits on the micropit bottom, the effective energy of nucleation of a vacancy island has been determined to be 4.1 ± 0.1 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. V. Latyshev and A. L. Aseev, Monatomic Steps on the Silicon Surface (Sib. Otdel. RAN, Novosibirsk, 2006) [in Russian].

    Google Scholar 

  2. Y. Homma, H. Hibino, and T. Ogino, Phys. Rev. B 58, 146 (1998).

    Article  Google Scholar 

  3. K. L. Man, A. B. Pang, and M. S. Altman, Surf. Sci. 601, 4669 (2007).

    Article  ADS  Google Scholar 

  4. S. V. Sitnikov, S. S. Kosolobov, and A. V. Latyshev, Semiconductors 51, 203 (2017).

    Article  ADS  Google Scholar 

  5. S. V. Sitnikov, A. V. Latyshev, and S. S. Kosolobov, J. Cryst. Growth 457, 196 (2015).

    Article  ADS  Google Scholar 

  6. H. C. Kan, T. Kwon, and R. J. Phaneuf, Phys. Rev. B 77, 205401 (2008).

    Article  ADS  Google Scholar 

  7. T. Kwon, R. J. Phaneuf, and H. Kan, Appl. Phys. Lett. 88, 071914 (2006).

    Article  ADS  Google Scholar 

  8. K. Li, N. Pradeep, S. Chikkamaranahalli, G. Stan, R. Attota, J. Fu, and R. Silver, J. Vac. Sci. Technol. B 29, 41806 (2011).

    Article  Google Scholar 

  9. K.-C. Chang and J. M. Blakely, Surf. Sci. 591, 133 (2005).

    Article  ADS  Google Scholar 

  10. H.-C. Jeong and E. D. Williams, Surf. Sci. Rep. 34, 171 (1999).

    Article  ADS  Google Scholar 

  11. T. Ogino, H. Hibino, and Y. Homma, Crit. Rev. Solid State Mater. Sci. 24, 227 (1999).

    Article  ADS  Google Scholar 

  12. S. V. Sitnikov, S. S. Kosolobov, D. V. Shchegolov, and A. V. Latyshev, RF Patent No. 2453874 (2012).

  13. C. A. Volkert and A. M. Minor, MRS Bull. 32, 389 (2007).

    Article  Google Scholar 

  14. K. Takayanagi, Y. Tanishiro, M. Takahashi, and S. Takahashi, J. Vac. Sci. Technol. A 3, 1502 (1985).

    Article  ADS  Google Scholar 

  15. A. Pimpinelli and J. Villain, Phys. A (Amsterdam, Neth.) 204, 521 (1994).

  16. Y. Homma, N. Aizawa, and T. Ogino, Jpn. J. Appl. Phys. 35, L241 (1996).

    Article  ADS  Google Scholar 

  17. Y. Homma, H. Hibino, T. Ogino, and N. Aizawa, Phys. Rev. B 55, R10237 (1997).

    Article  ADS  Google Scholar 

  18. S. V. Sitnikov, S. S. Kosolobov, and A. V. Latyshev, Surf. Sci. 633, L1 (2015).

    Article  ADS  Google Scholar 

  19. S. V. Sitnikov, S. S. Kosolobov, and A. V. Latyshev, Vestn. NGU 11, 94 (2016).

    Google Scholar 

  20. A. B. Pang, K. L. Man, M. S. Altman, T. J. Stasevich, F. Szalma, and T. L. Einstein, Phys. Rev. B 77, 115424 (2008).

    Article  ADS  Google Scholar 

  21. C. Alfonso, J. C. Heyraud, and J. J. Metois, Surf. Sci. Lett. 291, 745 (1993).

    ADS  Google Scholar 

  22. J. M. Bermond, J. C. Heyraud, and C. Alfonso, Surf. Sci. 331–333, 855 (1995).

    Article  Google Scholar 

  23. Y. Fukaya and Y. Shigeta, Phys. Rev. Lett. 85, 5150 (2000).

    Article  ADS  Google Scholar 

  24. V. Ignatescu and J. M. Blakely, Surf. Sci. 601, 5459 (2007).

    Article  ADS  Google Scholar 

  25. J. Frenken, P. Maree, and J. van der Veen, Phys. Rev. B 34, 7506 (1986).

    Article  ADS  Google Scholar 

  26. G. Grubel, D. Gibbs, D. Zehner, D. Abernathy, A. Sandy, and S. Mochrie, Surf. Sci. 287–288, 842 (1993).

    Article  Google Scholar 

  27. B. Pluis, J. Frenken, and J. van der Veen, Phys. Rev. Lett. 59, 2678 (1987).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is performed using equipment of the JUC “Nanostructures”; model construction is supported by the Russian Scientific Foundation, project no. 14-22-00143.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Petrov.

Additional information

Translated by N. Korovin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, A.S., Sitnikov, S.V., Kosolobov, S.S. et al. Evolution of Micropits on Large Terraces of the Si(111) Surface during High-Temperature Annealing. Semiconductors 53, 434–438 (2019). https://doi.org/10.1134/S1063782619040237

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619040237

Navigation