Skip to main content
Log in

Anodic Oxidation of Hydrogen-Transferred Silicon-on-Insulator Layers

  • FABRICATION, TREATMENT, AND TESTING OF MATERIALS AND STRUCTURES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The anodic oxidation rate of silicon-on-insulator films fabricated by hydrogen transfer is studied as a function of the temperature of subsequent annealing. It is established that the oxidation rate of transferred silicon-on-insulator films is five times lower compared to the oxidation rate of bulk single-crystal silicon samples. The oxidation rate increases, as the annealing temperature is elevated in the range 700–1100°C and as the depth of gradually removed anode-oxidized layers is increased. The results obtained in the study are attributed to an increase in the efficiencies of the anodic current and oxygen–silicon interatomic interaction due to the annealing of defects and due to release of hydrogen from the bound state, respectively. The formation of hydrogen bubbles in the surface region of silicon due to the diffusion of hydrogen, released in the process of the oxidation reaction, towards micropores in the silicon-on-insulator layer is detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. P. F. Schmidt and W. Michel, J. Electrochem. Soc. 104, 230 (1957).

    Article  Google Scholar 

  2. K. M. Busen and R. Linsey, Trans. Metall. Soc. AIME 236, 306 (1966).

    Google Scholar 

  3. W. Przyborski, J. Roed, J. Lippert, and L. Sarholt-Kristensen, Radiat. Eff. 1, 33 (1969).

    Article  ADS  Google Scholar 

  4. N. G. E. Johannson and I. W. Meyer, Solid-State Electron. 13, 317 (1970).

    Article  ADS  Google Scholar 

  5. A. Manara, A. Ostidich, G. Pedroli, and G. Restelli, Thin Solid Films 8, 359 (1971).

    Article  ADS  Google Scholar 

  6. V. A. Antonov, E. V. Spesivtsev, and I. E. Tyschenko, Semiconductors 45, 1089 (2011).

    Article  ADS  Google Scholar 

  7. G. Mende and G. Küster, Thin Solid Films 35, 215220 (1976).

    Article  Google Scholar 

  8. V. P. Popov and I. E. Tyschenko, RF Patent No. 2217842, Byul. Izobret., No. 33 (2003).

  9. J. P. Biersack and L. Haggmark, Nucl. Instrum. Methods Phys. Res. 174, 257 (1980). www.srim.org.

    Article  ADS  Google Scholar 

  10. K. Mitani and U. M. Gösele, Appl. Phys. A 54, 543 (1992).

    Article  ADS  Google Scholar 

  11. D. L. Griscom, J. Appl. Phys. 58, 2524 (1985).

    Article  ADS  Google Scholar 

  12. D. L. Griscomm, J. Non-Cryst. Solids 68, 301 (1984).

    Article  ADS  Google Scholar 

  13. N. N. Gerasimenko, A. V. Dvurechenskii, and G. M. Tseitlin, Prib. Tekh. Eksp. 5, 254 (1972).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the members of the technology group concerned with SOI and SOS structures (Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences), V.A. Antonov for his help in analyzing the sample surfaces, and V.P. Popov for helpful discussions of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Tyschenko.

Additional information

Translated by E. Smorgonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyschenko, I.E., Popov, I.V. & Spesivtsev, E.V. Anodic Oxidation of Hydrogen-Transferred Silicon-on-Insulator Layers. Semiconductors 53, 241–245 (2019). https://doi.org/10.1134/S1063782619020246

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619020246

Navigation