Skip to main content
Log in

Luminescence and Stimulated Emission of Polycrystalline Cu(In,Ga)Se2 Films Deposited by Magnetron-Assisted Sputtering

  • SPECTROSCOPY, INTERACTION WITH RADIATION
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The stimulated emission of Cu(In,Ga)Se2 alloy thin films formed by magnetron-assisted sputtering onto a sodium-fluoride layer deposited onto a molybdenum layer on a glass substrate is observed. The structural and optical parameters of the films are determined by scanning electron microscopy, local X-ray spectral microanalysis, X-ray structural analysis, and low-temperature luminescence (T = 10 K) measurements in the range of excitation levels of 1.6–75 kW cm–2 provided by nanosecond nitrogen-laser pulses. The stimulated emission threshold corresponds to ~25 kW cm–2. Comparative analysis of the emission of Cu(In,Ga)Se2 thin films suggests that the introduction of sodium results in significant improvement of the structural quality, specifically, in a decrease in the density of energy states in the band tails and in a decrease in the concentration of nonradiative-recombination centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, and A. W. Y. ho-Baillie, Prog. Photovolt. Res. Appl. 26, 3 (2018).

    Article  Google Scholar 

  2. A. Avancini, R. Carron, B. Bissig, P. Reinhard, R. Menozzi, G. Sozzi, S. D. Napoli, T. Feurer, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, Prog. Photovolt. Res. Appl. 25, 233 (2017).

    Article  Google Scholar 

  3. A. Polman, M. Knight, E. C. Garnett, B. Ehrler, and W. C. Sinke, Science (Washington, DC, U. S.) 352, aad4424 (2016).

    Article  Google Scholar 

  4. N. Refahati, A. V. Mudryi, V. D. Zhivulko, M. V. Yakushev, and R. Martin, J. Appl. Spectrosc. 81, 404 (2014).

    Article  ADS  Google Scholar 

  5. S. Minoura, K. Kodera, T. Maekawa, K. Miyazaki, S. Niki, and H. Fujiwara, J. Appl. Phys. 113, 063505 (2013).

    Article  ADS  Google Scholar 

  6. A. V. Mudryi, V. F. Gremenok, A. V. Karotki, V. B. Zalesski, M. V. Yakushev, F. Luckert, and R. Martin, J. Appl. Spectrosc. 77, 371 (2010).

    Article  ADS  Google Scholar 

  7. W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).

    Article  ADS  Google Scholar 

  8. G. Makrides, B. Zinsser, M. Norton, G. E. Georghiou, M. Schubert, and J. H. Werner, Renew. Sustain. Energy Rev. 14, 754 (2010).

    Article  Google Scholar 

  9. A. Jasenek and U. Rau, J. Appl. Phys. 9, 650 (2001).

    Article  ADS  Google Scholar 

  10. A. V. Karotki, A. V. Mudryi, M. V. Yakushev, F. Luckert, and R. Martin, J. Appl. Spectrosc. 77, 668 (2010).

    Article  ADS  Google Scholar 

  11. A. V. Mudryi, N. Refahati, V. D. Zhivul’ko, M. V. Yakushev, and R. V. Martin, Prib. Metody Izmer. 1, 106 (2014).

    Google Scholar 

  12. P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, and M. Powalla, Phys. Status Solidi RRL 10, 583 (2016).

    Article  Google Scholar 

  13. A. Chirila, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Krans, D. Keller, C. Gretenser, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, Nat. Mater. 12, 1107 (2013).

    Article  ADS  Google Scholar 

  14. S. Siebentritt, Curr. Opin. Green Sustain. Chem. 4, 1 (2017).

    Article  Google Scholar 

  15. P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, and M. Powalla, Phys. Status Solidi RRL 8, 219 (2014).

    Article  Google Scholar 

  16. D. Shin, J. Kim, T. Gershon, R. Mankad, M. Hopstaken, S. Guha, B. T. Ahn, and B. Shin, Sol. Energy Mater. Sol. Cells 157, 695 (2016).

    Article  Google Scholar 

  17. H. Zachmann, S. Heinker, A. Braun, A. V. Mudryi, V. F. Gremenok, A. V. Ivaniukovich, and M. V. Yakushev, Thin Solid Films 517, 2209 (2009).

    Article  ADS  Google Scholar 

  18. H. Zachmann, S. Puttnins, M. V. Yakushev, F. Luckert, R. W. Martin, A. V. Karotki, V. F. Gremenok, and A. V. Mudryi, Thin Solid Films 519, 7264 (2011).

    Article  ADS  Google Scholar 

  19. X. Sun, F. Jiang, and J. Feng, Comput. Mater. Sci. 47, 31 (2009).

    Article  Google Scholar 

  20. J. He, Y. Liu, W. Liu, Z. Li, A. Han, Z. Zhou, Y. Zhang, and Y. Sun, J. Phys. D: Appl. Phys. 47, 045105 (2014).

    Article  ADS  Google Scholar 

  21. J. Yang, H. W. Du, D. S. Chen, F. Xu, P. H. Zhou, J. Xu, and Z. Q. Ma, Mater. Lett. 145, 236 (2015).

    Article  Google Scholar 

  22. I. E. Svitsiankou, V. N. Pavlovskii, E. V. Lutsenko, G. P. Yablonskii, A. V. Mudryi, V. D. Zhivulko, M. V. Yakushev, and R. W. Martin, J. Phys. D: Appl. Phys. 49, 095106 (2016).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was supported by government orders, programs of scientific research in the Republic of Belarus “Photonics, Optoelectronics, and Microelectronics 2.1.01” and “Nanomaterials and Nanotechnologies 2.56”, and by the Russian Science Foundation, project no. 17-12-01500.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Pavlovskii.

Additional information

Translated by E. Smorgonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svitsiankou, I.E., Pavlovskii, V.N., Lutsenko, E.V. et al. Luminescence and Stimulated Emission of Polycrystalline Cu(In,Ga)Se2 Films Deposited by Magnetron-Assisted Sputtering. Semiconductors 52, 1238–1243 (2018). https://doi.org/10.1134/S1063782618100196

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618100196

Keywords

Navigation