Skip to main content
Log in

On the Formation of IR-Light-Emitting Ge Nanocrystals in Ge:SiO2 Films

  • MICROCRYSTALLINE, NANOCRYSTALLINE, POROUS, AND COMPOSITE SEMICONDUCTORS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The study is concerned with light-emitting Ge nanocrystals formed during the annealing of Gex[SiO2]1 –x films produced by the high-vacuum cosputtering of germanium and quartz targets onto substrates at a temperature of 100°C. In accordance with the conditions of growth, the Ge molar fraction was varied from 10 to 40%. By means of electron microscopy and Raman spectroscopy, amorphous Ge nanoclusters ~4–5 nm in dimensions are detected in as-deposited films with a Ge content higher than 20 mol %. To crystallize amorphous nanoclusters, annealing at temperatures of up to 650°C is used. The kinetics of the crystallization of Ge nanoclusters is studied, and it is established that up to ~1/3 of the amorphous phase is retained in the system, supposedly at the interfaces between nanocrystals and the surrounding amorphous SiO2 matrix. It is found that, upon annealing in normal atmosphere, germanium nanoclusters are partially or completely oxidized (at a Ge molar fraction of 30% and smaller). An intense infrared photoluminescence signal from quantum-confined Ge nanocrystals and a visible photoluminescence signal defined by defect complexes (oxygen vacancy + excess Ge atoms) are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. D. Carolan, Progr. Mater. Sci. 90, 128 (2017).

    Article  Google Scholar 

  2. E. G. Barbagiovanni, D. J. Lockwood, P. J. Simpson, and L. V. Goncharova, Appl. Phys. Rev. 1, 011302 (2014).

    Article  ADS  Google Scholar 

  3. C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloattiet, et al., Nature (London, U.K.) 528, 534 (2015).

    Article  ADS  Google Scholar 

  4. Y. Maeda, N. Tsukamoto, N. Yazawa, Y. Kanemitsu, and Y. Masumoto, Appl. Phys. Lett. 59, 3168 (1999).

    Article  ADS  Google Scholar 

  5. L. Pavesi, L. D. Negro, C. Mazzoleni, G. Franzò, and F. Priolo, Nature (London, U.K.) 408, 440 (2000).

    Article  ADS  Google Scholar 

  6. F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, Nat. Nanotechnol. 9, 19 (2014).

    Article  ADS  Google Scholar 

  7. G. A. Kachurin, A. F. Leier, K. S. Zhuravlev, I. E. Tyschenko, V. A. Volodin, V. Skorupa, and R. A. Yankov, Semiconductors 32, 1222 (1998).

    Article  ADS  Google Scholar 

  8. I. V. Antonova, M. B. Gulyaev, Z. Sh. Yanovitskaya, V. A. Volodin, D. V. Marin, M. D. Efremov, Y. Goldstein, and J. Jedrzejewski, Semiconductors 40, 1198 (2006).

    Article  ADS  Google Scholar 

  9. X. Wang, L. C. Kimerling, J. Michel, and J. Liu, Appl. Phys. Lett. 102, 131116 (2013).

    Article  ADS  Google Scholar 

  10. V. A. Volodin and L. V. Sokolov, JETP Lett. 101, 419 (2015).

    Article  ADS  Google Scholar 

  11. V. A. Volodin, V. A. Timofeev, A. R. Tuktamyshev, and A. I. Nikiforov, JETP Lett. 105, 327 (2017).

    Article  ADS  Google Scholar 

  12. M. Fujii, H. Sugimoto, and K. Imakita, Nanotechnology 27, 262001 (2016).

    Article  ADS  Google Scholar 

  13. H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, Appl. Phys. Lett. 43, 943 (1983).

    Article  ADS  Google Scholar 

  14. N. A. Drozdov, A. A. Patrin, and V. D. Tkachev, JETP Lett. 23, 597 (1976).

    ADS  Google Scholar 

  15. V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt, and W. Schröter, Appl. Phys. Lett. 84, 2106 (2004).

    Article  ADS  Google Scholar 

  16. E. G. Barbagiovanni, D. J. Lockwood, P. J. Simpson, and L. V. Goncharova, J. Appl. Phys. 111, 034307 (2012).

    Article  ADS  Google Scholar 

  17. V. A. Volodin, A. G. Cherkov, A. Kh. Antonenko, M. Stoffel, H. Rinnert, and M. Vergnat, Mater. Res. Express 4, 075010 (2017).

    Article  ADS  Google Scholar 

  18. I. Sychugov, R. Juhasz, J. Valenta, and J. Linnros, Phys. Rev. Lett. 94, 087405 (2005).

    Article  ADS  Google Scholar 

  19. S. Takeoka, M. Fujii, S. Hayashi, and K. Yamamoto, Phys. Rev. B 58, 7921 (1998).

    Article  ADS  Google Scholar 

  20. G. Taraschi, S. Saini, W. W. Fan, L. C. Kimerling, and E. A. Fitzgerald, J. Appl. Phys. 93, 9988 (2003).

    Article  ADS  Google Scholar 

  21. M. Ardyanian, H. Rinnert, and M. Vergnat, J. Appl. Phys. 100, 113106 (2006).

    Article  ADS  Google Scholar 

  22. M. Ardyanian, H. Rinnert, X. Devaux, and M. Vergnat, Appl. Phys. Lett. 89, 011902 (2006).

    Article  ADS  Google Scholar 

  23. Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, and Y. Masumoto, Appl. Phys. Lett. 59, 3168 (1991).

    Article  ADS  Google Scholar 

  24. J. G. Zhu, C. W. White, J. D. Budai, S. P. Withrow, and Y. Chen, J. Appl. Phys. 78, 4386 (1995).

    Article  ADS  Google Scholar 

  25. Y. Park, C. C. S. Chan, B. P. L. Reid, L. Nuttall, R. A. Tayloret, et al., Sci. Rep. 6, 25449 (2016).

    Article  ADS  Google Scholar 

  26. A. Nyrow, C. Sternemann, C. J. Sahle, A. Hohl, M. Zschintzsch-Diaset, et al., Nanotechnology 24, 165701 (2013).

    Article  ADS  Google Scholar 

  27. R. Gresback, Z. Holman, and U. Kortshagen, Appl. Phys. Lett. 91, 093119 (2007).

    Article  ADS  Google Scholar 

  28. Y. Gao, X. D. Pi, X. Wang, T. Yuan, Q. Jiang, et al., Part. Syst. Charact. 33, 271 (2016).

    Article  Google Scholar 

  29. S. Takeoka, K. Toshikiyo, M. Fujii, Sh. Hayashi, and K. Yamamoto, Phys. Rev. B 61, 15988 (2000).

    Article  ADS  Google Scholar 

  30. V. A. Volodin, D. V. Marin, H. Rinnert, and M. Vergnat, J. Phys. D: Appl. Phys. 46, 275305 (2013).

    Article  ADS  Google Scholar 

  31. V. A. Volodin, M. P. Gambaryan, A. G. Cherkov, V. I. Vdovin, M. Stoffel, H. Rinnert, and M. Vergnat, J. Exp. Theor. Phys. 121, 1076 (2015).

    Article  ADS  Google Scholar 

  32. V. A. Volodin, M. P. Gambaryan, A. G. Cherkov, M. Stoffel, H. Rinnert, and M. Vergnat, Mater. Res. Express 3, 085019 (2016).

    Article  ADS  Google Scholar 

  33. K. Zhong, M. Lai, Y. Chen, and B. Gu, Phys. B (Amsterdam, Neth.) 407, 3660 (2012).

  34. X. D. Pi and U. Kortshagen, Nanotechnology 20, 295602 (2009).

    Article  Google Scholar 

  35. M. Greben, P. Khoroshyy, X. Liu, X. Pi, and J. Valenta, J. Appl. Phys. 122, 034304 (2017).

    Article  ADS  Google Scholar 

  36. V. A. Volodin, K. O. Bugaev, A. K. Gutakovsky, L. I. Fedina, M. A. Neklyudova, A. V. Latyshev, and A. Misiuk, Thin Solid Films 520, 6207 (2012).

    Article  ADS  Google Scholar 

  37. V. A. Gritsenko, Phys. Usp. 51, 699 (2008).

    Article  ADS  Google Scholar 

  38. D. A. G. von Bruggeman, Ann. Phys. 5, 636 (1935).

    Article  Google Scholar 

  39. A. V. Kolobov, J. Appl. Phys. 87, 2926 (2000).

    Article  ADS  Google Scholar 

  40. I. H. Campbell and P. M. Fauchet, Solid State Commun. 58, 739 (1986).

    Article  ADS  Google Scholar 

  41. V. A. Volodin, D. V. Marin, V. A. Sachkov, E. B. Gorokhov, H. Rinnert, and M. Verghat, J. Exp. Theor. Phys. 118, 65 (2014).

    Article  ADS  Google Scholar 

  42. Y. Maeda, Phys. Rev. B 59, 1658 (1995).

    Article  ADS  Google Scholar 

  43. C. T. Kirk, Phys. Rev. B 38, 1255 (1988).

    Article  ADS  Google Scholar 

  44. P. G. Pai, S. S. Chao, Y. Takagi, and G. Lucovsky, J. Vac. Sci. Technol. A 4, 689 (1986).

    Article  ADS  Google Scholar 

  45. A. L. Shabalov and M. S. Feldman, Phys. Status Solidi A 83, K11 (1984).

    Article  ADS  Google Scholar 

  46. D. A. Jishiashvili and E. R. Kutelia, Phys. Status Solidi B 143, K147 (1987).

    Article  ADS  Google Scholar 

  47. L. Rebohle, J. von Borany, R. A. Yankov, W. Skorupa, I. E. Tyschenko, H. Fröb, and K. Leo, Appl. Phys. Lett. 71, 2809 (1997).

    Article  ADS  Google Scholar 

  48. W. Skorupa, L. Rebohle, and T. Gebel, Appl. Phys. A 76, 1049 (2003).

    Article  ADS  Google Scholar 

  49. Y. M. Niquet, G. Allan, C. Delerue, and M. Lannoo, Appl. Phys. Lett. 77, 1182 (2000).

    Article  ADS  Google Scholar 

  50. E. B. Gorokhov, V. A. Volodin, D. V. Marin, D. A. Orekhov, A. G. Cherkov, A. K. Gutakovskii, V. A. Shvets, A. G. Borisov, and M. D. Efremov, Semiconductors 39, 1168 (2005).

    Article  ADS  Google Scholar 

  51. D. V. Marin, V. A. Volodin, H. Rinnert, and M. Vergnat, JETP Lett. 95, 424 (2012).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was supported by the government order for the Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, program of basic research no. 0306-2016-0015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Volodin.

Additional information

Translated by E. Smorgonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volodin, V.A., Rui, Z., Krivyakin, G.K. et al. On the Formation of IR-Light-Emitting Ge Nanocrystals in Ge:SiO2 Films. Semiconductors 52, 1178–1187 (2018). https://doi.org/10.1134/S1063782618090233

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618090233

Keywords

Navigation