Skip to main content
Log in

Electron microscopy of an aluminum layer grown on the vicinal surface of a gallium arsenide substrate

  • Surfaces, Interfaces, and Thin Films
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A thin Al layer grown by molecular-beam epitaxy on a misoriented GaAs (100) substrate is studied by transmission electron microscopy. Electron diffraction data and bright-field, dark-field, and high-resolution images show that, in the layer, there are Al grains of three types of crystallographic orientation: Al (100), Al (110), and Al (110)R. The specific structural features of the interfaces between the differently oriented grains and substrate are studied by digital processing of the high-resolution images. From quantitative analysis of the dark-field images, the relative content and sizes of the differently oriented grains are determined. It is found that atomic steps at the substrate surface cause an increase in the fraction and sizes of Al (110)R grains and a decrease in the fraction of Al (100) grains, compared to the corresponding fractions and sizes in the layer grown on a singular substrate surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zh. I. Alferov, Semiconductors 32, 1 (1997).

    Article  ADS  Google Scholar 

  2. Zh. I. Alferov, V. M. Andreev, and V. D. Rumyantsev, Semiconductors 38, 899 (2004).

    Article  ADS  Google Scholar 

  3. J. P. Reithmaier, in Nanostructured Materials for Advanced Technological Applications, Ed. by J. P. Reithmaier, P. Petkov, W. Kulisch, and C. Popov (Springer, Dordrecht, 2008), p. 447.

  4. R. R. LaPierre, A. C. E. Chia, S. J. Gibson, C. M. Haapamaki, J. Boulanger, R. Yee, P. Kuyanov, J. Zhang, N. Tajik, N. Jewell, and K. M. A. Rahman, Phys. Status Solidi RRL 7, 815 (2013).

    Article  Google Scholar 

  5. B. L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and their Applications (Plenum, New York, 1984).

    Book  Google Scholar 

  6. W. Mönch, Electronic Structure of Metal-Semiconductor Contancts (Springer, Dordrecht, Netherlands, 1990).

    Book  Google Scholar 

  7. Z. Liliental-Weber, E. R. Weber, and N. Newman, in Contacts to Semiconductors: Fundamentals and Technology, Ed. by L. J. Brillson (Noyes Publications, Park Ridge, 1993), p. 416.

  8. J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, Nature Commun. 1, 150 (2010).

    Article  ADS  Google Scholar 

  9. Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, Science 337, 450 (2012).

    Article  ADS  Google Scholar 

  10. S.-W. Lin, J.-Y. Wu, S.-D. Lin, M.-C. Lo, M.-H. Lin, and C.-T. Liang, Jpn. J. Appl. Phys. 52, 045801 (2013).

    Article  ADS  Google Scholar 

  11. J. Massies, J. Chaplart, and N. T. Linh, Solid State Commun. 32, 707 (1979).

    Article  ADS  Google Scholar 

  12. P. M. Petroff, L. C. Feldman, A. Y. Cho, and R. S. Williams, J. Appl. Phys. 52, 7317 (1981).

    Article  ADS  Google Scholar 

  13. G. Landgren, R. Ludeke, and C. Serrano, J. Cryst. Growth 60, 393 (1982).

    Article  ADS  Google Scholar 

  14. C. J. Kiely and D. Cherns, Philos. Mag. A 59, 1 (1989).

    Article  ADS  Google Scholar 

  15. S. B. Samavedam and E. A. Fitzgerald, J. Appl. Phys. 81, 3108 (1997).

    Article  ADS  Google Scholar 

  16. Y. Sun, K. Li, J. Dong, X. Zeng, S. Yu, Y. Zhao, C. Zhao, and H. Yang, J. Mater. Sci.: Mater. Electron. 25, 581 (2014).

    Google Scholar 

  17. Y. S. Luo, Y.-N. Yang, J. H. Weaver, L. T. Florez, and C. J. Palmstrøm, Phys. Rev. B 49, 1893 (1994).

    Article  ADS  Google Scholar 

  18. F. Ernst and M. Rühle, High Resolution Imaging and Spectrometry of Materials (Springer, Berlin, 2003), pp. 69–118.

    Book  Google Scholar 

  19. A. Rosenauer, Transmission Electron Microscopy of Semiconductor Nanostructures: Analysis of Composition and Strain State (Springer Berlin, Heidelberg, 2003).

    Google Scholar 

  20. L. M. Sorokin, L. P. Efimenko, A. E. Kalmykov, and Yu. I. Smolin, Phys. Solid State 46, 893 (2004).

    Google Scholar 

  21. R. Ludeke, L. L. Chang, and L. Esaki, Appl. Phys. Lett. 23, 201 (1973).

    Article  ADS  Google Scholar 

  22. Y. Cho and P. D. Dernier, J. Appl. Phys. 49, 3328 (1978).

    Article  ADS  Google Scholar 

  23. Electron Microscopy of Thin Crystals, Ed. by P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, and M. J. Whelan (Plenum, New York, 1965; Mir, Moscow, 1968), ch. 15, p. 363.

    Google Scholar 

  24. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice Hall, 2007; Tekhnosfera, Moscow, 2005), p. 756.

    Google Scholar 

  25. http://rsb.info.nih.gov/ij/index.html

  26. A. K. Jain, Fundamentals of Digital Image Processing (Random House, New York, 1989), p. 394.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Lovygin.

Additional information

Original Russian Text © M.V. Lovygin, N.I. Borgardt, I.P. Kazakov, M. Seibt, 2015, published in Fizika i Tekhnika Poluprovodnikov, 2015, Vol. 49, No. 3, pp. 349–356.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lovygin, M.V., Borgardt, N.I., Kazakov, I.P. et al. Electron microscopy of an aluminum layer grown on the vicinal surface of a gallium arsenide substrate. Semiconductors 49, 337–344 (2015). https://doi.org/10.1134/S1063782615030136

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782615030136

Keywords

Navigation