Skip to main content
Log in

Monte Carlo simulation of the effect of silicon monoxide on silicon-nanocluster formation

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Silicon-nanocluster formation upon the annealing of SiO x (1 ≤ x < 2) layers is studied with the use of the lattice Monte Carlo model. The simulation is performed taking into account an additional mechanism of silicon transport due to the diffusion of silicon-monoxide (SiO) particles. It is demonstrated that the presence of SiO in the system leads to the growth of a critical silicon-nanocluster nucleus and can increase the nanocluster growth rate. Silicon-nanocluster formation upon the annealing of SiO x layers occurs only for the composition with x < 1.8. Upon the annealing of SiO x layers on a silicon substrate, a region depleted of silicon nanoclusters is observed in the layer adjacent to the substrate, which allows the formation of silicon nanoclusters in the SiO2 matrix at a certain distance from the Si/SiO2 interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, Nature 408, 440 (2000).

    Article  ADS  Google Scholar 

  2. Device Applications of Silicon Nanocrystals and Nanostructures, Ed. by N. Koshida (Springer, 2009).

    Google Scholar 

  3. Silicon Nanocrystals: Fundamentals, Synthesis and Applications, Ed. by L. Pavesi and R. Turan (Wiley-VCH, 2010).

    Google Scholar 

  4. L. Khriachtchev, M. Rasanen, S. Novikov, and J. Sinkkonen, Appl. Phys. Lett. 79, 1249 (2001).

    Article  ADS  Google Scholar 

  5. C. Y. Ng, T. P. Chen, M. S. Tse, V. S. W. Lim, S. Fung, and A. A. Tseng, Appl. Phys. Lett. 86, 152110 (2005).

    Article  ADS  Google Scholar 

  6. S. D. Sarma, R. de Sousa, X. Hu, and B. Koiller, Solid State Commun. 133, 737 (2005).

    Article  ADS  Google Scholar 

  7. V. Beyer, J. von Borany, and K.-H. Heinig, J. Appl. Phys. 101, 053516 (2007).

    Article  ADS  Google Scholar 

  8. G. A. Kachurin, S. G. Yanovskaya, M.-O. Ruault, A. K. Gutakovskii, K. S. Zhuravlev, O. Kaitasov, and H. Bernas, Semiconductors 34, 965 (2000).

    Article  ADS  Google Scholar 

  9. S. Cheylan, R. G. Elliman, K. Gaff, and A. Durandet, Appl. Phys. Lett. 78, 1670 (2001).

    Article  ADS  Google Scholar 

  10. N. Daldosso, G. Das, S. Larcheri, G. Mariotto, G. Dalba, L. Pavesi, A. Irrera, F. Priolo, F. Iacona, and F. Rocca, J. Appl. Phys. 101, 113510 (2007).

    Article  ADS  Google Scholar 

  11. A. N. Karpov, D. V. Marin, V. A. Volodin, J. Jedrzejewski, G. A. Kachurin, E. Savir, N. L. Shvarts, Z. Sh. Yanovitskaya, I. Balberg, and Y. Goldstein, Semiconductors 42, 731 (2008).

    Article  ADS  Google Scholar 

  12. J. Wang, X. F. Wang, Q. Li, A. Hryciw, and A. Meldrum, Philos. Mag. 87, 11 (2007).

    Article  ADS  Google Scholar 

  13. D. Comedi, O. H. Y. Zalloum, E. A. Irving, J. Wojcik, T. Roschuk, M. J. Flynn, and P. Mascher, J. Appl. Phys. 99, 023518 (2006).

    Article  ADS  Google Scholar 

  14. F. Iacona, G. Franzo, and C. Spinella, J. Appl. Phys. 87, 1295 (2000).

    Article  ADS  Google Scholar 

  15. L. A. Nesbit, Appl. Phys. Lett. 46, 38 (1985).

    Article  ADS  Google Scholar 

  16. D. Tsoukalas, C. Tsamis, and P. Normand, J. Appl. Phys. 89, 7809 (2001).

    Article  ADS  Google Scholar 

  17. S. Fukatsu, T. Takahashi, K. M. Itoh, M. Uematsu, A. Fujiwara, H. Kageshima, Y. Takahashi, K. Shiraishi, and U. Gosele, Appl. Phys. Lett. 83, 3897 (2003).

    Article  ADS  Google Scholar 

  18. T. Takahashi, S. Fukatsu, K. M. Itoh, M. Uematsu, A. Fujiwara, H. Kageshima, Y. Takahashi, and K. Shiraishi, J. Appl. Phys. 93, 3674 (2003).

    Article  ADS  Google Scholar 

  19. K. Furukawa Y. Liu, H. Nakashima, D. Gao, K. Uchino, K. Muraoka, and H. Tsusuki, Appl. Phys. Lett. 72, 725 (1998).

    Article  ADS  Google Scholar 

  20. H. Kageshima and K. Shiraishi, Phys. Rev. Lett. 81, 5936 (1998).

    Article  ADS  Google Scholar 

  21. T. A. Kirichenko, D. Yu, S. K. Banerjee, and G. S. Hwang, Phys. Rev. B 72, 035345 (2005).

    Article  ADS  Google Scholar 

  22. A. Korkin, J. C. Greer, G. Bersuker, V. V. Karasiev, and R. J. Bartlett, Phys. Rev. B 73, 165312 (2006).

    Article  ADS  Google Scholar 

  23. A. Bongiorno and A. Pasquarello, Phys. Rev. Lett. 88, 125901 (2002).

    Article  ADS  Google Scholar 

  24. R. Q. Zhang, M. W. Zhao, and S. T. Lee, Phys. Rev. Lett. 93, 095503 (2004).

    Article  ADS  Google Scholar 

  25. T. Muller, K.-H. Heinig, and W. Moller, Mater. Sci. Eng. B 101, 49 (2003).

    Article  Google Scholar 

  26. D. Yu, S. Lee, and G. S. Hwang, J. Appl. Phys. 102, 084309 (2007).

    Article  ADS  Google Scholar 

  27. A. V. Zverev, I. G. Neizvestnyi, N. L. Shwartz, and Z. Sh. Yanovitskaya, Nanotechnol. Russia 3, 368 (2008).

    Article  Google Scholar 

  28. E. A. Mikhant’ev, I. G. Neizvestnyi, S. V. Usenkov, and N. L. Shvarts, Avtometriya 47(5), 88 (2011).

    Google Scholar 

  29. A. V. Zverev, K. Yu. Zinchenko, N. L. Shwarts, and Z. Sh. Yanovitskaya, Nanotechnol. Russia 4, 215 (2009).

    Article  Google Scholar 

  30. G. Ya. Krasnikov, N. A. Zaitsev, and I. V. Matyushkin, Semiconductors 37, 44 (2003).

    Article  ADS  Google Scholar 

  31. V. M. Babich, N. I. Bletskan, and E. F. Venger, Oxygen in Silicon Single Crystals (Interpress LTD, Kiev, 1997) [in Russian].

    Google Scholar 

  32. D. Bahloul-Hourlier and P. Perrot, J. Phase Equilib. Diff. 28, 150 (2007).

    Article  Google Scholar 

  33. F. T. Ferguson and J. A. Nuth III, J. Chem. Eng. Data 53, 2824 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Usenkov.

Additional information

Original Russian Text © E.A. Mikhantiev, I.G. Neizvestny, S.V. Usenkov, N.L. Shwartz, 2014, published in Fizika i Tekhnika Poluprovodnikov, 2014, Vol. 48, No. 7, pp. 917–925.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhantiev, E.A., Neizvestny, I.G., Usenkov, S.V. et al. Monte Carlo simulation of the effect of silicon monoxide on silicon-nanocluster formation. Semiconductors 48, 891–898 (2014). https://doi.org/10.1134/S1063782614070136

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782614070136

Keywords

Navigation