Skip to main content
Log in

High-power diode lasers (λ = 1.7–1.8 µm) based on asymmetric quantum-well separate-confinement InGaAsP/InP heterostructures

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Advantages of the concept of high-powered semiconductor nanoheterostructure lasers for the spectral range 1700–1800 nm, grown by MOCVD in the InGaAsP/InP solid solution system, have been experimentally demonstrated. It has been found that using an expanded waveguide enables reduction to 2 cm−1 of the internal optical loss in quantum-well asymmetric separate-confinement double InGaAsP/InP heterostructures emitting at a wavelength of 1.76 µm. The heterostructures developed have been used to create multimode lasers with a room-temperature CW output power of 2.5 W in an aperture of 100 µm. It is shown that use of highly stressed quantum-well InGaAs layers as the active region makes it possible to obtain characteristic temperatures T 0 = 50–60 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Vatnik, E. Balashov, A. Pavljuk, E. Golikova, and A. Lyutetskiy, Opt. Commun. 220, 397 (2003).

    Article  ADS  Google Scholar 

  2. E. Sorokin, S. Naumov, and I. T. Sorokina, IEEE J. Sel. Topics Quant. Electron. 11, 690 (2005).

    Article  Google Scholar 

  3. E. G. Golikova, V. A. Kureshov, A. V. Lyutetskii, N. A. Pikhtin, N. V. Fetisova, A. Yu. Leshko, Yu. A. Ryaboshtan, S. O. Slipchenko, Z. N. Sokolova, A. D. Bondarev, and I. S. Tarasov, Pis’ma Zh. Tekh. Fiz. 28(3), 66 (2002) [Tech. Phys. Lett. 28, 113 (2002)].

    Google Scholar 

  4. A. V. Lyutetskii, N. A. Pikhtin, S. O. Slipchenko, Z. N. Sokolova, N. V. Fetisova, A. Yu. Leshko, V. V. Shamakhov, A. Yu. Andreev, Yu. A. Ryaboshtan, E. G. Golikova, and I. S. Tarasov, Fiz. Tekh. Poluprovodn. 37, 1394 (2003) [Semiconductors 37, 1356 (2003)].

    Google Scholar 

  5. A. V. Lyutetskii, N. A. Pikhtin, S. O. Slipchenko, N. V. Fetisova, A. Yu. Leshko, Yu. A. Ryaboshtan, E. G. Golikova, and I. S. Tarasov, Pis’ma Zh. Tekh. Fiz. 29(7), 55 (2003) [Tech. Phys. Lett. 29, 290 (2003)].

    Google Scholar 

  6. A. V. Lyutetskii, K. S. Borshchev, A. D. Bondarev, T. A. Nalet, N. A. Pikhtin, S. O. Slipchenko, N. V. Fetisova, M. A. Khomylev, A. A. Marmalyuk, Yu. A. Ryaboshtan, V. A. Simakov, and I. S. Tarasov, Fiz. Tekh. Poluprovodn. 41, 883 (2007) [Semiconductors 41, 860 (2007)].

    Google Scholar 

  7. N. A. Pikhtin, S. O. Slipchenko, Z. N. Sokolova, and I. S. Tarasov, Fiz. Tekh. Poluprovodn. 38, 374 (2004) [Semiconductors 38, 360 (2004)].

    Google Scholar 

  8. N. A. Pikhtin, S. O. Slipchenko, Z. N. Sokolova, A. L. Stankevich, D. A. Vinokurov, I. S. Tarasov, and Zh. I. Alferov, Electron. Lett. 40, 1413 (2004).

    Article  Google Scholar 

  9. D. A. Vinokurov, S. A. Zorina, V. A. Kapitonov, A. V. Murashova, D. N. Nikolaev, A. L. Stankevich, M. A. Kho- mylev, V. V. Shamakhov, A. Yu. Leshko, A. V. Lyutetskii, T. A. Nalet, N. A. Pikhtin, S. O. Slipchenko, Z. N. Sokolova, N. V. Fetisova, and I. S. Tarasov, Fiz. Tekh. Poluprovodn. 39, 388 (2005) [Semiconductors 39, 370 (2005)].

    Google Scholar 

  10. S. O. Slipchenko, D. A. Vinokurov, N. A. Pikhtin, Z. N. Sokolova, A. L. Stankevich, I. S. Tarasov, and Zh. I. Alferov, Fiz. Tekh. Poluprovodn. 38, 1477 (2004) [Semiconductors 38, 1430 (2004)].

    Google Scholar 

  11. N. C. Casey, Jr. and M. B. Panish, Heterostructure Lasers (Academic, New York, 1978; Mir, Moscow, 1981).

    Google Scholar 

  12. X. He, D. Xu, A. Ovtchinnikov, S. Wilson, F. Malarayap, R. Supe, and R. Patel, Electron. Lett. 35, 1343 (1999).

    Article  Google Scholar 

  13. A. V. Lyutetskii, K. S. Borshchev, N. A. Pikhtin, S. O. Slipchenko, Z. N. Sokolova, and I. S. Tarasov, Fiz. Tekh. Poluprovodn. 42, 106 (2008) [Semiconductors 42, 104 (2008)].

    Google Scholar 

  14. J. S. Major, D. W. Nam, J. S. Osinski, and D. F. Welch, IEEE Photon. Technol. Lett. 5, 594 (1993).

    Article  ADS  Google Scholar 

  15. H. K. Choi and S. J. Eglash, IEEE J. Quant. Electron. 27, 1555 (1991).

    Article  ADS  Google Scholar 

  16. H. K. Choi and S. J. Eglash, Appl. Phys. Lett. 61, 1154 (1992).

    Article  ADS  Google Scholar 

  17. E. G. Golikova, V. A. Kureshov, A. Yu. Leshko, A. V. Lyutetskii, N. A. Pikhtin, Yu. A. Ryaboshtan, G. A. Skrynnikov, I. S. Tarasov, and Zh. I. Alferov, Fiz. Tekh. Poluprovodn. 34, 886 (2000) [Semiconductors 34, 853 (2000)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Pikhtin.

Additional information

Original Russian Text © A.V. Lyutetskiy, N.A. Pikhtin, N.V. Fetisova, A.Yu. Leshko, S.O. Slipchenko, Z.N. Sokolova, Yu.A. Ryaboshtan, A.A. Marmalyuk, I.S. Tarasov, 2009, published in Fizika i Tekhnika Poluprovodnikov, 2009, Vol. 43, No. 12, pp. 1646–1649.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyutetskiy, A.V., Pikhtin, N.A., Fetisova, N.V. et al. High-power diode lasers (λ = 1.7–1.8 µm) based on asymmetric quantum-well separate-confinement InGaAsP/InP heterostructures. Semiconductors 43, 1602–1605 (2009). https://doi.org/10.1134/S1063782609120057

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782609120057

Keywords

Navigation