Skip to main content
Log in

A Microwave Discharge in High-Velocity Flows Initiated by a Half-Wave Antenna

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A microwave discharge in high-velocity (150–250 m/s) air flows induced on a half-wave vibrator is studied. A cw magnetron microwave generator with a frequency of 2.45 GHz and an output power of up to 5 kW was used for initiation of the microwave discharge. The high-speed video imaging was used for studying the discharge structure, determining the diameter and length of the plasma channel as a function of flow velocity and pressure. Electron concentration and temperature, along with characteristic gas temperature, were determined based on the optical spectra. The possibility of using this microwave discharge for ignition of hydrocarbon–air mixtures in combustion chambers of ramjet engines is proved experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. S. B. Leonov, Energies 11, 1733 (2018). https://doi.org/10.3390/en11071733

    Article  Google Scholar 

  2. Yu. A. Lebedev, Plasma Sources Sci. Technol. 24, 053001 (2015). https://doi.org/10.1088/0963-0252/24/5/053001

    Article  ADS  Google Scholar 

  3. A. S. Zarin, A. A. Kuzovnikov, and V. M. Shibkov, Freely Localized Microwave Discharge in Air (Neft’ Gaz, Moscow, 1996) [in Russian].

  4. V. M. Shibkov, S. A. Dvinin, A. P. Ershov, R. S. Konstantinovskii, O. S. Surkont, V. A. Chernikov, and L. V. Shibkova, Plasma Phys. Rep. 33, 72 (2007).

    Article  ADS  Google Scholar 

  5. A. I. Babaritskii, E. N. Gerasimov, S. A. Demkin, V. K. Zhivotov, A. A. Knizhnik, B. V. Potapkin, V. D. Rusanov, E. I. Ryazantsev, R. V. Smirnov, and G. V. Sholin, Tech. Phys. 45, 1411 (2000).

    Article  Google Scholar 

  6. Yu. F. Kolesnichenko, V. G. Brovkin, S. A. Afanas’ev, D. V. Khmara, V. A. Lashkov, and I. Ch. Mashek, in Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2005, Paper AIAA 2005-405.

  7. L. P. Grachev, I. I. Esakov, and K. V. Khodataev, Tech. Phys. 43, 1414 (1998).

    Article  Google Scholar 

  8. L. P. Grachev, I. I. Esakov, and K. V. Khodataev, Tech. Phys. 44, 1271 (1999).

    Article  Google Scholar 

  9. L. P. Grachev, I. I. Esakov, and K. V. Khodataev, Tech. Phys. 44, 1276 (1999).

    Article  Google Scholar 

  10. D. V. Bychkov, L. P. Grachev, I. I. Esakov, A. A. Ravaev, and L. G. Severinov, Tech. Phys. 54, 1276 (2009).

    Article  Google Scholar 

  11. G. M. Batanov, S. I. Gritsinin, I. A. Kossyi, A. N. Magunov, V. P. Silakov, and N. M. Tarasova, Tr. Fiz. Inst. im. P.N. Lebedeva, Akad. Nauk SSSR 160, 174 (1985).

    Google Scholar 

  12. S. A. Dvinin, Vestn. Mosk. Univ., Ser. 3: Fiz., Astron. 26 (6), 30 (1985).

    Google Scholar 

  13. V. B. Gildenburg, I. S. Guschin, S. A. Dvinin, and A. V. Kim, Sov. Phys. JETP 70, 645 (1990).

    ADS  Google Scholar 

  14. I. S. Guschin and S. A. Dvinin, Comput. Math. Model. 3, 339 (1992).

    Article  Google Scholar 

  15. P. V. Vedenin and N. A. Popov, J. Exp. Theor. Phys. 81, 286 (1995).

    ADS  Google Scholar 

  16. P. V. Vedenin and N. A. Popov, J. Exp. Theor. Phys. 96, 40 (2003).

    Article  ADS  Google Scholar 

  17. N. T. Pashchenko and Yu. P. Raizer, Sov. J. Plasma Phys. 8, 617 (1982).

    ADS  Google Scholar 

  18. Yu. P. Raizer, Sov. Phys. JETP 34, 114 (1972).

    ADS  Google Scholar 

  19. Yu. P. Raizer, Laser Spark and Discharge Propagation (Nauka, Moscow, 1974) [in Russian]; Yu. P. Raizer, Laser-Induced Discharge Phenomena (Consultants Bureau, NewYork, 1977).

  20. V. E. Semenov, Sov. J. Plasma Phys. 8, 347 (1982).

    ADS  Google Scholar 

  21. Yu. Ya. Brodskii, S. V. Golubev, V. G. Zorin, A. G. Luchinin, and V. E. Semenov, Sov. Phys. JETP 57, 989 (1983).

    ADS  Google Scholar 

  22. T. V. Borodacheva and V. E. Semenov, Sov. Phys. Tech. Phys. 30, 1019 (1985).

    ADS  Google Scholar 

  23. S. A. Dvinin and V. A. Dovzhenko, Sov. J. Plasma Phys. 14, 41 (1988).

    Google Scholar 

  24. K. V. Khodataev and B. R. Gorelik, Plasma Phys. Rep. 23, 215 (1997).

    ADS  Google Scholar 

  25. C. O. Laux, in Physico-Chemical Modeling of High Enthalpy and Plasma Flows: Lecture Series 2002, Ed. by D. Fletcher, J.-M. Charbonnier, G. S. R. Sarma, and T. Magin (von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse, 2002).

  26. J. Luque and D. R. Crosley, Report MP-99-009 (SRI International, Menlo Park, CA, 1999), p. 21.

  27. The line-by-line radiative code SPARTAN, 2019. http://esther.ist.utl.pt/spartan/. Cited October 25, 2023.

  28. J. J. Olivero and R. L. Longbothum, J. Quant. Spectrosc. Radiat. Transfer 17, 233 (1977).

    Article  ADS  Google Scholar 

  29. G. A. Kasabov and V. V. Eliseev, Spectroscopic Tables for Low-Temperature Plasma (Atomizdat, Moscow, 1976) [in Russian].

    Google Scholar 

  30. Principles of Laser Plasmas, Ed. by G. Bekefi (Wiley, New York, 1976).

    Google Scholar 

  31. Plasma Diagnostics, Ed. by W. Lochte-Holtgreven (Elsevier, New York, 1968).

    Google Scholar 

  32. L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov, Kinetics of Nonequilibrium Low-Temperature Plasmas (Nauka, Moscow, 1982; Consultants Bureau, New York, 1987).

  33. V. V. Zlobin, A. A. Kuzovnikov, and V. M. Shibkov, Vestn. Mosk. Univ., Ser. 3: Fiz., Astron. 29 (1), 89 (1988).

    Google Scholar 

  34. P. S. Bulkin, S. A. Dvinin, G. S. Solntsev, and I. E. Shkradyuk, Vestn. Mosk. Univ., Ser. 3: Fiz., Astron. 27 (5), 15 (1986).

    Google Scholar 

  35. L. M. Baltin, V. M. Batenin, I. I. Devyatkin, V. R. Lebedeva, and N. I. Tsemko, High Temp. 9, 1019 (1972).

    Google Scholar 

  36. I. A. Kossyi, A. Y. Kostinsky, A. A. Matveyev, and V. P. Silakov, Plasma Sources Sci. Technol. 1, 207 (1992).

    Article  ADS  Google Scholar 

  37. E. Tatarova, F. M. Dias, E. Felizardo, J. Henriques, M. J. Pinheiro, C. M. Ferreira, and B. Gordiets, J. Appl. Phys. 108, 123305 (2010). https://doi.org/10.1063/1.3525245

    Article  ADS  Google Scholar 

  38. A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team, NIST Atomic Spectra Database, version 5.10, 2022.https://doi.org/10.18434/T4W30F.CitedOctober25,2023.

Download references

Funding

K.N. Kornev acknowledges the support of the Theoretical Physics and Mathematics Advancement Foundation “BASIS.” This research was supported by the Russian S-cience Foundation, project no. 23-22-00233, https://rscf.ru/project/23-22-00233/.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. N. Kornev or S. A. Dvinin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kornev, K.N., Logunov, A.A., Surkont, O.S. et al. A Microwave Discharge in High-Velocity Flows Initiated by a Half-Wave Antenna. Plasma Phys. Rep. 50, 388–396 (2024). https://doi.org/10.1134/S1063780X24600129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X24600129

Keywords:

Navigation