Skip to main content
Log in

The Study of Surface Sliding Discharge Interacting with an Oblique Shock Wave

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A distributed surface sliding discharge with a duration of 500 ns in supersonic air flows with an oblique shock wave had been experimentally studied. The Mach numbers of the flows were 1.18–1.68, the density was 0.02–0.45 kg/m3. The discharge was initiated in a single pulse mode. With a voltage of 25 kV, the discharge current was about 1 kA. It is shown that the discharge current, as well as the spatio-temporal characteristics of the radiation depend on the parameters of the local rarefaction zone in the boundary layer. In a stationary flow with an oblique shock wave, the discharge is generated as a single channel. Analysis of high-speed shadowgraphy of the flow after discharge showed that a single discharge channel generates a semi-cylindrical shock wave. The purpose of the work was to study the motion of the shock wave generated from the discharge under different conditions of supersonic flow. Comparison of the experimental dynamic of the shock wave with the results of numerical modelling of the flow based on the non-stationary Navier–Stokes equations showed that the value of the thermal energy released in the discharge channel is 0.15–0.36 J.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. S. B. Leonov, I. V. Adamovich, and V. R. Soloviev, Plasma Sources Sci. Technol. 25, 063001 (2016). https://doi.org/10.1088/0963-0252/25/6/063001

  2. I. V. Mursenkova, I. A. Znamenskaya, and A. E. Lutsky, J. Phys. D: Appl. Phys. 51, 105201 (2018). https://doi.org/10.1088/1361-6463/aaa838

  3. A. Yu. Starikovskiy and N. L. Aleksandrov, Plasma Phys. Rep. 47, 148 (2021). https://doi.org/10.1134/S1063780X21020069

    Article  ADS  Google Scholar 

  4. N. Webb, C. Clifford, and M. Samimy, Exp. Fluids 54, 1545 (2013). https://doi.org/10.1007/s00348-013-1545-z

    Article  Google Scholar 

  5. N. Benard and E. Moreau, Exp. Fluids 55, 1846 (2014). https://doi.org/10.1007/s00348-014-1846-x

    Article  Google Scholar 

  6. I. V. Mursenkova, I. E. Ivanov, Yu. Liao, and I. A. Kryukov, Energies 15, 2189 (2022). https://doi.org/10.3390/en15062189

    Article  Google Scholar 

  7. I. V. Mursenkova, A. Yu. Kuznetsov, and A. S. Sazonov, Appl. Phys. Lett. 115, 114102 (2019). https://doi.org/10.1063/1.5116810

  8. I. V. Mursenkova, I. E. Ivanov, P. Ulanov, Yu. Liao, and A. S. Sazonov, J. Phys.: Conf. Ser. 1698, 012001 (2020). https://doi.org/10.1088/1742-6596/1698/1/012001

  9. E. Moreau, D. Bayoda, and N. Benard, J. Appl. Phys. 54 075207 (2021). https://doi.org/10.1088/1361-6463/abc44b

  10. S. G. Atanasov, I. O. Vasilev, G. P. Kovalyov, G. P. Kuz’min, and A. A. Nesterenko, J. Phys. D: Appl. Phys. 21, 1750 (1988). https://doi.org/10.1088/0022-3727/21/12/014

    Article  ADS  Google Scholar 

  11. V. M. Borisov, A. I. Demin, A. V. El’tsov, V. P. Novikov, and O. B. Khristoforov, Quantum Electron. 29, 204 (1999). https://doi.org/10.1070/QE1999v029n03ABEH001451

    Article  ADS  Google Scholar 

  12. I. A. Znamenskaya, D. F. Latfullin, A. E. Lutsky, I. V. Mursenkova, and N. N. Sysoev, Tech. Phys. 52, 546 (2007). https://doi.org/10.1134/S1063784207050027

    Article  Google Scholar 

  13. Yu. Liao, I. V. Mursenkova, I. E. Ivanov, I. A. Znamenskaya, and N. N. Sysoev, Phys. Fluids 32, 106108 (2020). https://doi.org/10.1063/5.0025319

  14. I. A. Znamenskaya, D. F. Latfullin, A. E. Lutskii, and I. V. Mursenkova, Tech. Phys. Lett. 36, 795 (2010). https://doi.org/10.1134/S1063785010090063

    Article  ADS  Google Scholar 

  15. G. S. Glushko, I. E. Ivanov, and I. A. Kryukov, Math. Models Comput. Simul. 2, 407 (2010). https://doi.org/10.1134/S2070048210040010

    Article  MathSciNet  Google Scholar 

  16. N. O. Arkhipov, I. A. Znamenskaya, I. V. Mursenkova, I. Yu. Ostapenko, and N. N. Sysoev, Moscow Univ. Phys. Bull. 69, 96 (2014). https://doi.org/10.3103/S0027134914010020

    Article  ADS  Google Scholar 

  17. H. Brunet and P. Vincent, J. Appl. Phys. 50, 4708 (1979). https://doi.org/10.1063/1.326527

    Article  ADS  Google Scholar 

  18. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer, Berlin, 1991).

  19. N. A. Popov, Plasma Phys. Rep. 37, 807 (2011). https://doi.org/10.1134/S1063780X1108006X

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Mursenkova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mursenkova, I.V., Ivanov, I.E., Liao, Y. et al. The Study of Surface Sliding Discharge Interacting with an Oblique Shock Wave. Plasma Phys. Rep. 49, 795–801 (2023). https://doi.org/10.1134/S1063780X22601468

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22601468

Keywords:

Navigation