Skip to main content
Log in

Investigation of X-Ray Self-Emission of Plasma of Targets Heated by High-Power Pulses of Soft X-Ray Radiation

  • PLASMA DYNAMICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Experiments aimed at investigation of X-ray self-emission of plasma of heated targets consisting of layers of different materials (Mylar, polypropylene, In, Sn, and Au) exposed to the action of energy flux of X‑ray radiation (the so-called energy exposure of the target) of up to 10 kJ/cm2 were carried out. A Z-pinch induced by implosion of a tungsten wire-array by current of up to 4 MA in Angara-5-1 facility was used as a source of high-power X-ray radiation. The temporal dynamics of intensity of self-emission of heated targets was studied. In the process, contribution of expanding layer of a material with high atomic number Z to self-emission of the target dominates that of a Mylar film with effective charge Zeff ≈ 4.5. It is demonstrated that the 1/e decay time of target emission depends on expansion dynamics of target plasma. The latter, in turn, depends on orientation of the layer characterized by high atomic number relative to the source of radiation. New data on spectral composition of self-emission of targets and its changes with time is obtained. This data is compared with the results of numerical simulation of target heating and scatter by means of RALEF-2D two-dimensional radiation gas-dynamic code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.

Similar content being viewed by others

REFERENCES

  1. R. B. Spielman, C. Deeney, G. A. Chandler, M. R. Douglas, D. L. Fehl, M. K. Matzen, D. H. McDaniel, T. J. Nash, J. L. Porter, T. W. L. Sanford, J. F. Seamen, W. A. Stygar, K. W. Struve, S. P. Breeze, J. S. McGurn, et al., Phys. Plasmas 5, 2105 (1998).

    Article  ADS  Google Scholar 

  2. M. C. Jones, D. J. Ampleford, M. E. Cuneo, R. Hohlfelder, C. A. Jennings, D. W. Johnson, B. Jones, M. R. Lopez, J. MacArthur, J. A. Mills, T. Preston, G. A. Rochau, M. Savage, D. Spencer, D. B. Sinars, et al., Rev. Sci. Instrum. 85, 083501 (2014).

  3. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Dover, New York, 2002).

    Google Scholar 

  4. S. Depierreux, V. Tassin, D. Antigny, R. E. Bahr, N. Botrel, R. Bourdenet, G. DeDemo, L. DeLaval, O. Dubos, J. Fariaut, M. Ferri, T. Filkins, S. LeTacon, C. Source, B. Villette, et al., Phys. Rev. Lett. 125, 255002 (2020).

  5. J. E. Bailey, G. A. Rochau, R. C. Mancini, C. A. Iglesias, J. J. MacFarlane, I. E. Golovkin, C. Blancard, Ph. Cosse, and G. Faussurier, Phys. Plasmas 16, 058101 (2009).

  6. J.-C. Pain and F. Gilleron, High Energy Density Phys. 34, 100745 (2020).

  7. E. V. Grabovskii, P. V. Sasorov, A. P. Shevelko, V. V. Aleksandrov, S. N. Andreev, M. M. Basko, A. V. Branitskii, A. N. Gritsuk, G. S. Volkov, Ya. N. Laukhin, K. N. Mitrofanov, V. G. Novikov, G. M. Oleinik, A. A. Samokhin, V. P. Smirnov, et al., JETP Lett. 103, 350 (2016).

    Article  ADS  Google Scholar 

  8. K. N. Mitrofanov, V. V. Aleksandrov, E. V. Grabovskii, A. N. Gritsuk, I. N. Frolov, A. V. Branitskii, and Ya. N. Laukhin, Plasma Phys. Rep. 43, 444 (2017).

    Article  ADS  Google Scholar 

  9. E. V. Grabovski, P. V. Sasorov, A. P. Shevelko, V. V. Aleksandrov, S. N. Andreev, M. M. Basko, A. V. Branitski, A. N. Gritsuk, G. S. Volkov, Ya. N. Laukhin, K. N. Mitrofanov, G. M. Oleinik, A. A. Samokhin, V. P. Smirnov, I. Yu. Tolstikhina, et al., Matter Radiat. Extremes 2, 129 (2017).

    Google Scholar 

  10. Z. A. Al’bikov, E. P. Velikhov, A. I. Veretennikov, V. A. Glukhikh, E. V. Grabovskii, G. M. Gryaznov, O. A. Gusev, G. N. Zhemchuzhnikov, V. I. Zaitsev, O. A. Zolotovskii, Yu. A. Istomin, O. V. Kozlov, I. S. Krasheninnikov, S. S. Kurochkin, G. M. Latmanizova, et al., At. Energ. 68, 26 (1990).

    Google Scholar 

  11. M. M. Basko, P. V. Sasorov, M. Murakami, V. G. Novikov, and A. S. Grushin, Plasma Phys. Control. Fusion 54, 055003 (2012).

  12. Dukhov Automatics Research Institute. Equipment for Recording Fast Processes. http://www.vniia.ru/production/bystroprotekaushie-processy/apparatura-dlya-registratsii-bystroprotekayushchikh-protsessov.php. Cited February 1, 2021.

  13. G. S. Volkov, N. I. Lakhtyushko, and O. V. Terent’ev, Instrum. Exp. Tech. 53, 728 (2010).

    Article  Google Scholar 

  14. R. H. Day, P. Lee, E. B. Saloman, and D. J. Nagel, J. Appl. Phys. 52, 6965 (1981).

    Article  ADS  Google Scholar 

  15. X-Ray Mass Attenuation Coefficients. Database. https://physics.nist.gov/PhysRefData/XrayMassCoef/tab3.html. Cited February 1, 2021.

  16. Filter Transmission Database. http://henke.lbl.gov/optical_constants/. Cited February 1, 2021.

  17. A. P. Shevelko, D. E. Bliss, E. D. Kazakov, M. G. Mazarakis, D. S. McGurn, L. B. Knight, K. V. Struve, I. Yu. Tolstikhina, and T. J. Weeks, Plasma Phys. Rep. 34, 944 (2008).

    Article  ADS  Google Scholar 

  18. K. N. Mitrofanov, E. V. Grabovskii, A. N. Gritsuk, Ya. N. Laukhin, V. V. Aleksandrov, G. M. Oleinik, S. F. Medovshchikov, and A. P. Shevelko, Plasma Phys. Rep. 39, 62 (2013).

    Article  ADS  Google Scholar 

  19. SBS Compressed Picosecond DPSS Nd:YAG Lasers. SL230 series. https://ekspla.com/products/picosecond-lasers/. Cited February 1, 2021.

  20. S. S. Churilov and A. N. Ryabtsev, Opt. Spectrosc. 101, 169 (2006).

    Article  ADS  Google Scholar 

  21. M. M. Basko, J. Maruhn, and A. Tauschwitz, J. Comput. Phys. 228, 2175 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  22. M. M. Basko, J. Maruhn, and A. Tauschwitz, in GSI Report 2010-1 (Gesellschaft für Schwerionenforschung, Darmstadt, 2010), p. 410. http://www.gsi.de/library/GSI-Report-2010-1/.

    Google Scholar 

  23. An. Tauschwitz, M. Basko, A. Frank, V. Novikov, A. Grushin, A. Blazevic, M. Roth, and J. A. Maruhna, High Energy Density Phys. 9, 158 (2013).

    Article  ADS  Google Scholar 

  24. A. Frank, A. Blažević, V. Bagnoud, M. M. Basko, M. Boerner, W. Cayzac, D. Kraus, T. Heßling, D. H. H. Hoffmann, A. Ortner, A. Otten, A. Pelka, D. Pepler, D. Schumacher, A. Tauschwitz, et al., Phys. Rev. Lett. 110, 115001 (2013).

  25. A. F. Nikiforov, V. G. Novikov, and V. B. Uvarov, Quantum-Statistical Models of Hot Dense Matter: Methods for Computation Opacity and Equation of State (Progress in Mathematical Physics, Vol. 37) (Fizmatlit, Moscow, 2000; Birkhäuser, Basel, 2005).

  26. R. M. More, K. H. Warren, D. A. Young, and G. B. Zimmerman, Phys. Fluids 31, 3059 (1988).

    Article  ADS  Google Scholar 

  27. S. Faik, A. Tauschwitz, and I. Iosilevskiy, Comput. Phys. Commun. 227, 117 (2018).

    Article  ADS  Google Scholar 

  28. F. Torretti, J. Sheil, R. Schupp, M. M. Basko, M. Bayraktar, R. A. Meijer, S. Witte, W. Ubachs, R. Hoekstra, O. O. Versolato, A. J. Neukirch, and J. Colgan, Nat. Commun. 11, 2334 (2020).

    Article  ADS  Google Scholar 

  29. S. Faik, M. M. Basko, A. Tauschwitz, I. Iosilevskiy, and J. A. Maruhn, High Energy Density Phys. 8, 349 (2012).

    Article  ADS  Google Scholar 

  30. D. L. Youngs, Phys. Fluids A 3, 1312 (1991).

    Article  ADS  Google Scholar 

  31. H. J. Kull, Phys. Rep. 206, 197 (1991).

    Article  ADS  Google Scholar 

  32. D. Oron, L. Arazi, D. Kartoon, A. Rikanati, U. Alon, and D. Shvarts, Phys. Plasmas 8, 2883 (2001).

    Article  ADS  Google Scholar 

  33. M. M. Basko, J. A. Maruhn, and T. Schlegel, Phys. Plasmas 9, 1348 (2002).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the team of the Angara-5-1 complex for engineering support of the experiments and to the High Field Initiative project [CZ.02.1.01/0.0/0.0/ 15_003/0000449] from the European Regional Development Fund.

Funding

This research was supported by the Russian Foundation for Basic Research, projects nos. 20-02-00007, 20-21-00082\20, 18-29-21005, and 20-31-70015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Mitrofanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrov, V.V., Basko, M.M., Branitskii, A.V. et al. Investigation of X-Ray Self-Emission of Plasma of Targets Heated by High-Power Pulses of Soft X-Ray Radiation. Plasma Phys. Rep. 47, 669–703 (2021). https://doi.org/10.1134/S1063780X21070035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X21070035

Keywords:

Navigation