Skip to main content
Log in

Analysis of the dependence of surfatron acceleration of electrons by an electromagnetic wave in space plasma on the particle momentum along the wave front

  • Space Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Based on the numerical solution of the nonlinear nonstationary second-order equation for the wave phase on the particle trajectory, the dynamics of surfatron acceleration of electrons by an electromagnetic wave propagating across the external magnetic field in space plasma is analyzed as a function of the electron momentum along the wave front. Numerical calculations show that, for strongly relativistic initial values of the electron momentum component along the wave front g y (0) (the other parameters of the problem being the same), electrons are trapped into the regime of ultrarelativistic surfatron acceleration within a certain interval of the initial wave phase Ψ(0) on the particle trajectory. It is assumed in the calculations that |Ψ(0)| ≤ π. For strongly relativistic values of g y (0), electrons are immediately trapped by the wave for 19% of the initial values of the phase Ψ(0) (favorable phases). For the rest of the values of Ψ(0), trapping does not occur even at long times. This circumstance substantially simplifies estimations of the wave damping due to particle acceleration in subsequent calculations. The dynamics of the relativistic factor and the components of the electron velocity and momentum under surfatron acceleration is also analyzed. The obtained results are of interest for the development of modern concepts of possible mechanisms of generation of ultrarelativistic particle fluxes in relatively calm space plasma, as well as for correct interpretation of observational data on the fluxes of such particles and explanation of possible reasons for the deviation of ultrarelativistic particle spectra detected in the heliosphere from the standard power-law scalings and the relation of these variations to space weather and large-scale atmospheric processes similar to tropical cyclones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Katsouleas and J. M. Dawson, Phys. Rev. Lett. 51, 392 (1983).

    Article  ADS  Google Scholar 

  2. C. Joshi, Radiat. Plasmas 1, 514 (1984).

    Google Scholar 

  3. B. E. Gribov, R. Z. Sagdeev, V. D. Shapiro, and V. I. Shevchenko, JETP Lett. 42, 63 (1985).

    ADS  Google Scholar 

  4. S. V. Bulanov and A. S. Sakharov, Plasma Phys. Rep. 26, 1005 (2000).

    Article  ADS  Google Scholar 

  5. N. S. Erokhin, A. A. Lazarev, S. S. Moiseev, and R. Z. Sagdeev, Sov. Phys. Dokl. 32, 656 (1987).

    ADS  Google Scholar 

  6. M. I. Sitnov, Sov. Tech. Phys. Lett. 14, 40 (1988).

    ADS  Google Scholar 

  7. N. S. Erokhin, S. S. Moiseev, and R. Z. Sagdeev, Sov. Astron. Lett. 15, 39 (1989).

    Google Scholar 

  8. G. N. Kichigin, JETP 92, 895 (2001).

    Article  ADS  Google Scholar 

  9. A. I. Neishtadt, A. V. Artemyev, L. M. Zelenyi, and D. L. Vainshtein, JETP Lett. 89, 441 (2009).

    Article  ADS  Google Scholar 

  10. V. M. Loznikov and N. S. Erokhin, Vopr. At. Nauki Tekh., Ser. Plazm. Elektron., No. 4, 121 (2010).

    Google Scholar 

  11. N. S. Erokhin, N. N. Zol’nikova, E. A. Kuznetsov, and L. A. Mikhailovskaya, Vopr. At. Nauki Tekh., Ser. Plazm. Elektron., No. 4, 116 (2010).

    Google Scholar 

  12. A. I. Neishtadt, A. V. Artemyev, and L. M. Zelenyi, Regul. Chaotic Dyn. 15, 564 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. V. M. Loznikov, N. S. Erokhin, N. N. Zol’nikova, and L. A. Mikhailovskaya, Plasma Phys. 39 (10), 829 (2013).

    Article  Google Scholar 

  14. R. Shkevov, N. S. Erokhin, L. A. Mikhailovskaya, and N. N. Zolnikova, J. Atmos. Solar−Terr. Phys. 99, 73 (2012).

    Article  ADS  Google Scholar 

  15. A. N. Erokhin, N. S. Erokhin, and V. P. Milant’ev, Plasma Phys. Rep. 38, 396 (2012).

    Article  ADS  Google Scholar 

  16. A. I. Neishtadt, B. A. Petrovichev, and A. A. Chernikov, Sov. J. Plasma Phys. 15, 593 (1989).

    Google Scholar 

  17. G. M. Zaslavskii, A. I. Neishtadt, B. A. Petrovichev, and R. Z. Sagdeev, Sov. J. Plasma Phys. 15, 368 (1989).

    Google Scholar 

  18. E. G. Berezhko and G. F. Krymskii, Sov. Phys. Usp. 31, 27 (1988).

    Article  ADS  Google Scholar 

  19. V. S. Ptuskin, Phys. Usp. 50, 534 (2007).

    Article  ADS  Google Scholar 

  20. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Nauka, Moscow, 1973; Pergamon, Oxford, 1975).

    Google Scholar 

  21. A. N. Erokhin, N. N. Zol’nikova, and N. S. Erokhin, Plasma Phys. Rep. 40, 812 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Erokhin.

Additional information

Original Russian Text © A.N. Erokhin, N.N. Zol’nikova, N.S. Erokhin, 2016, published in Fizika Plazmy, 2016, Vol. 42, No. 1, pp. 36–42.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erokhin, A.N., Zol’nikova, N.N. & Erokhin, N.S. Analysis of the dependence of surfatron acceleration of electrons by an electromagnetic wave in space plasma on the particle momentum along the wave front. Plasma Phys. Rep. 42, 32–37 (2016). https://doi.org/10.1134/S1063780X16010062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X16010062

Keywords

Navigation