Skip to main content
Log in

Numerical investigation of the effect of driving voltage pulse shapes on the characteristics of low-pressure argon dielectric barrier discharge

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

In this work, we numerically compare the effect of a sinusoidal, triangular, and rectangular pulsed voltage profile on the calculated particle production, electric current, and gas voltage in a dielectric barrier discharge. The total argon gas pressure of 400 Pa, the distance between dielectrics of 5 mm, the dielectric thickness of 0.7 mm, and the temperature of T = 300 K were considered as input parameters. The different driving voltage pulse shapes (triangular, rectangular, and sinusoidal) are considered as applied voltage with a frequency of 7 kHz and an amplitude of 700 V peak to peak. It is shown that applying a rectangular voltage, as compared with a sinusoidal or triangle voltage, increases the current peak, while the peak width is decreased. Higher current density is related to high production of charged particles, which leads to the generation of some highly active species, such as Ar* (4s level), and Ar** (4p level) in the gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kanazava, J. Phys. D 21, 838 (1988).

    Article  ADS  Google Scholar 

  2. T.-L. Sung, S. Teii, C.-M. Liu, R.-C. Hsiao, P.-C. Chen, Y.-H. Wu, C. K. Yang, S. Ono, K. Ebihara, and K. Teii, IEEE Trans. Plasma Sci. 40, 2751 (2012).

    Article  ADS  Google Scholar 

  3. M. J. Pavlovich, H. Chang, W. Y. Sakiyama, D. S. Clark, and D. B. Graves, J. Phys. D 46, 145202 (2013).

    Article  ADS  Google Scholar 

  4. B. Verheyde, D. Havermans, and A. Vanhulsel, Plasma Process. Polym. 8, 755 (2011).

    Article  Google Scholar 

  5. G. Da Ponte, E. Sardella, F. Fanelli, R. D’Agostino, R. Gristina, and P. Favia, Plasma Process. Polim. 9, 1176 (2012).

    Article  Google Scholar 

  6. C. Zhang, T. Shao, K. Long, Y. Yu, J. Wang, D. Zhang, P. Yan, and Y. Zhou, IEEE Trans. Plasma Sci. 38, 1517 (2010).

    Article  ADS  Google Scholar 

  7. J. Nui, D. Liu, and Y. Wu, Surf. Coat. Technol. 205, 3434 (2011).

    Article  Google Scholar 

  8. K. Kostov, V. Rocha, C. Kogaito, B. Matos, M. Algatti, R. Honda, M. Kayama, and R. Mota, Surf. Coat. Technol. 204, 2954 (2010).

    Article  Google Scholar 

  9. V. Cheruthazhekatt, M. Cernak, P. Slavicek, and J. Havel, J. Appl. Biomed. 8, 55 (2010).

    Article  Google Scholar 

  10. D. Merche, N. Vandencasteele, and F. Reniers, Thin Solid Films 520, 4219 (2012).

    Article  Google Scholar 

  11. P. Premkumar, S. Starostin, H. De Vries, M. Creatore, P. Koenraad, W. Macdonald, and M. Van de Sanden, Plasma Process. Polym. 9, 1194 (2012).

    Article  Google Scholar 

  12. O. Goossens, E. Dekempeneer, D. Vangeneugden, R. Van de Leest, and C. Leys, Surf. Coat. Technol. 142, 474 (2001).

    Article  Google Scholar 

  13. I. Radu, M. Reiche, M. Zoberbier, M. Gabriel, and U. Gosele, in Proceedings of the 8th International Symposium on Semiconductor Wafer Bonding: Science, Technology, and Applications, Quebec, 2005, Ed. by K. Hobart, S. Bengtsson, H. Baumgart, T. Suga, and C. Hunt, p. 295.

  14. S. Wieneke, S. Born, and W. Viol, J. Phys. D 33, 1282 (2000).

    Article  ADS  Google Scholar 

  15. S. Wieneke, C. Uhrlandt, and W. Viol, Laser. Phys. Lett. 1, 241 (2004).

    Article  ADS  Google Scholar 

  16. R. Carman and R. Mildren, J. Phys. D 36, 19 (2003).

    Article  ADS  Google Scholar 

  17. S. Beleznai, G. Mihajlik, I. Maros, L. Balazs, and P. Richter, J. Phys. D 43, 015203 (2010).

    Article  ADS  Google Scholar 

  18. B. M. Obradovic, G. B. Sretenovic, and M. M. Kuraica, J. Hazard. Mater. 185, 1280 (2011).

    Article  Google Scholar 

  19. H. X. Ding, A. M. Zhu, X. F. Yang, C. H. Li, and Y. Xu, J. Phys. D 38, 4160 (2005).

    Article  ADS  Google Scholar 

  20. I. C. Song, S. W. Hwang, J. W. Ok, D. H. Kim, H. J. Lee, C. H. Park, and H. J. Lee, IEEE Trans. Plasma Sci. 37, 1572 (2009).

    Article  ADS  Google Scholar 

  21. C. S. Choi, S. M. Lee, K. H. Cho, and K. C. Choi, IEEE Trans. Plasma Sci. 37, 2074 (2009).

    Article  ADS  Google Scholar 

  22. K. W. Cheng, C. T. Hung, M. H. Chiang, F. N. Hwang, and J. S. Wu, Comput. Phys. Commun. 182, 164 (2011).

    Article  MATH  ADS  Google Scholar 

  23. M. Miclea, K. Kunze, G. Musa, J. Franzke, and K. Niemax, Spectrochim. Acta B 56, 37 (2001).

    Article  ADS  Google Scholar 

  24. K. Kunze, M. Miclea, G. Musa, J. Franzke, C. Vadla, and K. Niemax, Spectrochim. Acta B 57, 137 (2002).

    Article  ADS  Google Scholar 

  25. D. Liu, T. Ma, S. Yu, Y. Xu, and X. Yang, J. Phys. D 34, 1651 (2001).

    Article  ADS  Google Scholar 

  26. D. Liu, W. Li, Z. Feng, X. Tan, B. Chen, J. Niu, and Y. Liu, Surf. Coat. Technol. 203, 1231 (2009).

    Article  Google Scholar 

  27. D. Liu, S. Yu, Y. Liu, C. Ren, J. Zhang, and T. Ma, Thin Solid Films 414, 163 (2002).

    Article  ADS  Google Scholar 

  28. R. Brandenburg, V. Maiorov, Y. B. Golubovskii, H. Wagner, and J. Behnke, J. Phys. D 38, 2187 (2005).

    Article  ADS  Google Scholar 

  29. Y. B. Golubovskii, V. Maiorov, and J. Behnke, J. Phys. D 35, 751 (2002).

    Article  ADS  Google Scholar 

  30. N. Gherardi, G. Gouda, E. Gat, A. Ricard, and F. Massines, Plasma Sources Sci. Technol. 9, 340 (2000).

    Article  ADS  Google Scholar 

  31. F. Massines, A. Rabehi, P. Decomps, R. B. Gadri, P. Segur, and C. Mayoux, J. Phys. 83, 2950 (1998).

    Google Scholar 

  32. D. Trunec, A. Brablec, and J. Buchta, J. Phys. D 34, 1697 (2001).

    Article  ADS  Google Scholar 

  33. B. Eliasson and U. Kogelschatz, Appl. Phys. B 46, 299 (1998).

    Article  ADS  Google Scholar 

  34. U. Kogelschatz, B. Eliasson, and W. Egli, Pure Appl. Chem. 71, 1819 (1999).

    Article  Google Scholar 

  35. U. Kogelschatz, Plasma Chem. Plasma Process. 23, 1 (2003).

    Article  Google Scholar 

  36. M. S. Barnes, T. J. Cotler, and M. E. Elta, J. Appl. Phys. 61, 81 (1987).

    Article  ADS  Google Scholar 

  37. T. E. Nitschke and D. B. Graves, J. Appl. Phys. 76, 5646 (1994).

    Article  ADS  Google Scholar 

  38. E. Hammond, K. Mahesh, and P. Moin, J. Comput. Phys. 176, 402 (2002).

    Article  MATH  ADS  Google Scholar 

  39. Yu. P. Raizer, Gas Discharge Physics (Springer-Verlag, Berlin, 1991).

    Book  Google Scholar 

  40. http://www.bolsig.laplace.univ-tlse.fr/

  41. A. V. Vasenkov and M. J. Kushner, Phys. Rev. E 66, 066411 (2002).

    Article  ADS  Google Scholar 

  42. K. W. Morton and D. F. Mayers, Numerical Solution of Partial Differential Equations: an Introduction (Cambrige University Press, Cambrige, 2005).

    Book  Google Scholar 

  43. P. L. Ventzek, R. J. Hoekstra, and M. J. Kushner, J. Vac. Sci. Technol. 12, 461 (1994).

    Article  Google Scholar 

  44. M. M. Iqbal, Doctoral dissertation (Dublin City University, Dublin, 2010).

  45. E. Wagenaars, R. Brandenburg, W. Brok, M. Bowden, and H. Wagner, J. Phys. D 39, 700 (2006).

    Article  ADS  Google Scholar 

  46. H. Luo, Z. Liang, X. Wang, Z. Guan, and L. Wang, J. Phys. D 41, 205205 (2008).

    Article  ADS  Google Scholar 

  47. F. Massines, P. Segur, and N. I. Gherard, Surf. Coat. Technol. 174, 8 (2003).

    Article  Google Scholar 

  48. A. N. Klucharev and V. Vujnovic, Phys. Rep. 185, 55 (1990).

    Article  ADS  Google Scholar 

  49. L. Vriens, Phys. Lett. 8, 260 (1964).

    Article  ADS  Google Scholar 

  50. N. L. Bassett and D. J. Economou, J. Appl. Phys. 75, 1931 (1994).

    Article  ADS  Google Scholar 

  51. K. Tachibana, Phys. Rev. A 34, 1007 (1986).

    Article  ADS  Google Scholar 

  52. F. Mehr and M. A. Biondi, Phys. Rev. 176, 322 (1968).

    Article  ADS  Google Scholar 

  53. R. Johnsen, A. Chen, and M. A. Biondi, J. Chem. Phys. 73, 1717 (1980).

    Article  ADS  Google Scholar 

  54. W. Brok, J. Van Dijk, M. Bowden, J. Van Der Mullen, and G. Kroesen, J. Phys. D 36, 1967 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Eslami.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eslami, E., Barjasteh, A. & Morshedian, N. Numerical investigation of the effect of driving voltage pulse shapes on the characteristics of low-pressure argon dielectric barrier discharge. Plasma Phys. Rep. 41, 519–528 (2015). https://doi.org/10.1134/S1063780X15060021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X15060021

Keywords

Navigation