Skip to main content
Log in

Study of the interrelation between the electrotechnical parameters of the plasma focus discharge circuit and the plasma compression dynamics on the PF-3 and PF-1000 facilities

  • Plasma Dynamics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The main stages of the plasma current sheath (PCS) dynamics on two plasma focus (PF) facilities with different geometries of the electrode system, PF-3 (Filippov type) and PF-1000 (Mather type), were studied by analyzing the results of the current and voltage measurements. Some dynamic characteristics, such as the PCS velocity in the acceleration phase in the Mather-type facility (PF-1000), the moment at which the PCS reaches the anode end, and the plasma velocity in the radial stage of plasma compression in the PF-3 Filippov-type facility, were determined from the time dependence of the inductance of the discharge circuit with a dynamic plasma load. The energy characteristics of the discharge circuit of the compressing PCS were studied for different working gases (deuterium, argon, and neon) at initial pressures of 1.5–3 Torr in discharges with energies of 0.3–0.6 MJ. In experiments with deuterium, correlation between the neutron yield and the electromagnetic energy deposited directly in the compressed PCS was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. V. Fillipov, T. I. Fillipova, and V. P. Vinogradov, Nucl. Fusion Suppl. 2, 577 (1962).

    Google Scholar 

  2. J. W. Mather, Fhys. Fluids 8, 366 (1965).

    Article  ADS  Google Scholar 

  3. L. Michel, K. H. Schonbach, and H. Fisher, Appl. Phys. Lett. 24, 57 (1974).

    Article  ADS  Google Scholar 

  4. C. Gourlan, H. Kroegler, Ch. Maisonnier, T. Oppenlander, and J. P. Rager, in Proceedings of the 8th European Conference on Controlled Fusion and Plasma Physics, Prague, 1977, Vol. 2, p. 178.

  5. V. I. Agafonov, G. V. Golub, L. G. Golubchikov, V. F. Dyachenko, V. D. Ivanov, V. S. Imshennik, Yu. A. Kolesnikov, E. B. Svirsky, N. V. Filippov, and T. I. Filippova, in Proceedings of the 3rd International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Novosibirsk, 1968 (IAEA, Vienna, 1969), Vol. 2, p. 21.

    Google Scholar 

  6. V. I. Krauz, K. N. Mitrofanov, V. V. Myalton, E. V. Grabovski, V. S. Koidan, V. P. Vinogradov, Yu. V. Vinogradova, and G. G. Zukakishvili, IEEE Trans. Plasma Sci. 38, 92 (2010).

    Article  ADS  Google Scholar 

  7. V. I. Krauz, K. N. Mitrofanov, V. V. Myalton, V. P. Vinogradov, Yu. V. Vinogradova, E. V. Grabovski, G. G. Zukakishvili, V. S. Koidan, and A. N. Mokeev, Plasma Phys. Rep. 36, 937 (2010).

    Article  ADS  Google Scholar 

  8. V. Krauz, K. Mitrofanov, M. Scholz, M. Paduch, L. Karpinski, E. Zielinska, and P. Kubes, Plasma Phys. Controlled Fusion 54, 025010 (2012).

    Article  ADS  Google Scholar 

  9. K. N. Mitrofanov, V. I. Krauz, V. V. Myalton, V. P. Vinogradov, Yu. V. Vinogradova, E. V. Grabovski, S. A. Dan’ko, A. A. Zelenin, S. F. Medovshchikov, and A. N. Mokeev, Plasma Phys. Rep. 40, 110 (2014).

    Article  ADS  Google Scholar 

  10. L. Soto, C. Pavez, F. Castillo, F. Veloso, J. Moreno, and S. K. H. Auluck, Phys. Plasmas 21, 072702 (2014).

    Article  ADS  Google Scholar 

  11. V. A. Gribkov, A. V. Dubrovskii, A. I. Isakov, N. V. Kalachev, T. A. Kozlova, V. M. Korzhavin, and V. Ya. Nikulin, Tr. FIAN 127, 32 (1980).

    Google Scholar 

  12. V. Ya. Nikulin, S. N. Polukhin, and A. A. Tikhomirov, Fiz. Plazmy 31, 642 (2005).

    Google Scholar 

  13. V. V. Aleksandrov, E. V. Grabovski, K. N. Mitrofanov, G. M. Oleinik, V. P. Smirnov, P. V. Sasorov, and I. N. Frolov, Plasma Phys. Rep. 30, 568 (2004).

    Article  ADS  Google Scholar 

  14. M. E. Cuneo, E. M. Waisman, S. V. Lebedev, J. P. Chittenden, W. A. Stygar, G. A. Chandler, R. A. Vesey, E. P. Yu, T. J. Nash, D. E. Bliss, G. S. Sarkisov, T. C. Wagoner, G. R. Bennett, D. B. Sinars, J. L. Porter, W. W. Simpson, L. E. Ruggles, D. F. Wenger, C. J. Garasi, B. V. Oliver, R. A. Aragon, W. E. Fowler, M. C. Hettrick, G. C. Idzorek, D. Johnson, K. Keller, S. E. Lazier, J. S. McGurn, T. A. Mehlhorn, T. Moore, D. S. Nielsen, J. Pyle, S. Speas, K. W. Struve, and J. A. Torres, Phys. Rev. E 71, 046406 (2005).

    Article  ADS  Google Scholar 

  15. G. C. Burdiak, S. V. Lebedev, G. N. Hall, A. J. Harvey-Thompson, F. Suzuki-Vidal, G. F. Swadling, E. Khoory, L. Pickworth, S. N. Bland, P. de Grouchy, and J. Skidmore, Phys. Plasmas 20, 032705 (2013).

    Article  ADS  Google Scholar 

  16. G. Decker, W. Kies, W. Maysenholder, and G. Pross, in Proceedings of the 3rd IEEE International Pulsed Power Conference, Albuquerque, NM, 1981, p. 392.

  17. G. Decker, W. Kies, and G. Pross, Phys. Fluids 26, 571 (1983).

    Article  ADS  Google Scholar 

  18. I. V. Volobuev, V. A. Gribkov, A. V. Dubrovskii, A. I. Isakov, N. V. Kalachev, T. A. Kozlova, O. N. Krokhin, V. Ya. Nikulin, M. G. Belkov, P. A. Belyaev, V. M. Zaitsev, Yu. F. Igonin, E. D. Korop, S. G. Kuznetsov, and V. A. Maevskii, Sov. J. Plasma Phys. 14, 579 (1988).

    Google Scholar 

  19. V. E. Fortov, M. A. Karakin, E. Yu. Khautiev, V. I. Krauz, F. Stanislav, S. F. Medovschikov, A. N. Mokeev, V. V. Myalton, S. L. Nedoseev, V. P. Smirnov, and V. P. Vinogradov, in Proceedings of the 5th International Conference on Dense Z-Pinches, Albuquerque, NM, 2002, AIP Conf. Proc. 651, 37 (2002).

    ADS  Google Scholar 

  20. M. Scholz, R. Miklaszewski, V. A. Gribkov, and F. Mezzetti, Nukleonika 45, 155 (2000).

    Google Scholar 

  21. M. A. Karakin, E. Yu. Khautiev, V. I. Krauz, A. N. Mokeev, D. Mourenas, V. V. Myalton, F. Simonet, V. P. Smirnov, V. P. Tykshaev, J. Vierne, V. V. Vikhrev, and V. P. Vinogradov, in Proceedings of the 15th International Conference on High-Power Particle Beams, St. Petersburg, 2004, p. 738.

  22. P. G. Eltgroth, Phys. Fluids 25, 2408 (1982).

    Article  ADS  Google Scholar 

  23. M. Borowiecki, B. Bienkowska, S. Jednorog, L. Karpinski, M. Paduch, M. Scholz, and M. J. Sadowski, Czech. J. Phys. Suppl. 56, B184 (2006).

    Article  Google Scholar 

  24. V. I. Krauz, K. N. Mitrofanov, V. V. Myalton, V. P. Vinogradov, Yu. V. Vinogradova, E. V. Grabovski, and V. S. Koidan, Plasma Phys. Rep. 37, 742 (2011).

    Article  ADS  Google Scholar 

  25. V. I. Krauz, K. N. Mitrofanov, M. Scholz, M. Paduch, P. Kubes, L. Karpinski, and E. Zielinska, Europhys. Lett. 98, 45001 (2012).

    Article  ADS  Google Scholar 

  26. V. Krauz, K. Mitrofanov, M. Scholz, V. V. Myalton, M. Paduch, E. V. Grabovskii, L. Karpinski, V. S. Koidan, V. P. Vinogradov, Yu. V. Vinogradova, and E. Zielinska, Nukleonika 57, 201 (2012).

    Google Scholar 

  27. V. I. Krauz, K. N. Mitrofanov, D. A. Voitenko, Yu. V. Matveev, and G. I. Astapenko, Plasma Phys. Rep. 39, 888 (2013).

    Article  ADS  Google Scholar 

  28. M. Scholz, Synteza Termojądrowa i Plasma-Focus (IFJ PAN. Kraków, 2014) [in Polish].

    Google Scholar 

  29. M. Scholz, L. Karpiski, V. I. Krauz, P. Kubes, M. Paduch, and M. J. Sadowsky, Nukleonika 57(2), 183 (2012).

    Google Scholar 

  30. L. Spitzer, Physics of Fully Ionized Gases (Wiley, New York, 1962).

    Google Scholar 

  31. L. I. Rudakov, A. L. Velikovich, J. Davis, J. W. Thornhill, J. L. Giuliani, Jr., and C. Deeney, Phys. Rev. Lett. 84, 3326 (2000).

    Article  ADS  Google Scholar 

  32. J. Kortanek, P. Kubes, J. Kravarik, K. Rezac, D. Klir, M. Paduch, T. Pisarczyk, E. Zielinska, T. Chodukowski, and Z. Kalinowska, Phys. Scr. 161, 014044 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Mitrofanov.

Additional information

Original Russian Text © K.N. Mitrofanov, V.I. Krauz, E.V. Grabovski, V.V. Myalton, V.P. Vinogradov, M. Paduch, M. Scholz, L. Karpiński, 2015, published in Fizika Plazmy, 2015, Vol. 41, No. 5, pp. 413–433.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitrofanov, K.N., Krauz, V.I., Grabovski, E.V. et al. Study of the interrelation between the electrotechnical parameters of the plasma focus discharge circuit and the plasma compression dynamics on the PF-3 and PF-1000 facilities. Plasma Phys. Rep. 41, 379–398 (2015). https://doi.org/10.1134/S1063780X15040030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X15040030

Keywords

Navigation