Skip to main content
Log in

Collision of plane thermonuclear detonation waves in a preliminarily compressed DT mixture

  • Plasma Diagnostics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The paper deals with a one-dimensional problem on symmetric irradiation of a plane DT fuel layer with a thickness 2H and density ρ0 ⩽ 100ρ s (where ρ s is the density of the DT fuel in the solid state at atmospheric pressure and a temperature of 4 K) by two identical monoenergetic proton beams with a kinetic energy of 1 MeV, an intensity of 1019 W/cm2, and a duration of 50 ps. The problem is solved in the framework of one-fluid two-temperature hydrodynamic model that takes into account the equation of state for hydrogen, electron and ion heat conductivities, kinetics of the DT reaction, plasma self-radiation, and plasma heating by α-particles. The irradiation of the fuel results in the appearance of two counterpropagating detonation waves to the fronts of which rarefaction waves are adjacent. The efficiency of the DT reaction after the collision (reflection from the plane of symmetry) of the detonation waves depends on the spatial homogeneity of thermodynamic functions between the fronts of the reflected detonation waves. At Hρ0 ≈ 1 g/cm2, the gain factor is G ≈ 200, whereas at Hρ0 ≈ 5 g/cm2, it is G > 2000. As applied to a cylindrical target that is ignited from ends and in which the cylinder with the fuel is surrounded by a heavy magnetized shell, the obtained values of the burn-up and gain factors are maximum possible. To estimate the ignition energy E ig of a cylindrical target by using solutions to the one-dimensional problem, a quasi-one-dimensional model is developed. The model assumes that the main mechanism of target ignition is fuel heating by α-particles. The trajectories of α-particles are limited by a cylindrical surface with a given radius, which is a parameter of the model and is identified with the fuel radius in the target and the radii of the irradiating proton beams. This model reproduces the well-known theoretical dependence E ig ∼ ρ −20 and yields E ig = 160 kJ as a lower estimate of the ignition energy for ρ0 = 100ρ s ≈ 22 g/cm3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, Phys. Plasmas 11, 339 (2004).

    Article  ADS  Google Scholar 

  2. N. G. Basov, S. Y. Gus’kov, and L. P. Feoktistov, J. Sov. Laser Res. 13, 396 (1992).

    Article  Google Scholar 

  3. M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S.C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, Phys. Plasmas 1, 1626 (1994).

    Article  ADS  Google Scholar 

  4. S. Yu. Gus’kov, Plasma Phys. Rep. 39, 1 (2013).

    Article  ADS  Google Scholar 

  5. M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S. V. Bulanov, E. M. Campbell, M. D. Perry, and H. Powell, Phys. Rev. Lett. 86, 436 (2001).

    Article  ADS  Google Scholar 

  6. S. Yu. Gus’kov, Quant. Electron. 31, 885 (2001).

    Article  ADS  Google Scholar 

  7. A. Caruso and C. Strangio, JETP 97, 948 (2003).

    Article  ADS  Google Scholar 

  8. M. D. Churazov, A. G. Aksenov, and E. A. Zabrodina, Vopr. At. Nauki Tekh., Ser. Mat. Model. Fiz. Protsess., No. 1, 20 (2001).

    Google Scholar 

  9. S. A. Medin, M. D. Churazov, D. G. Koshkarev, B. Y. Sharkov, Y. N. Orlov, and V. M. Suslin, Laser Part. Beams 20, 419 (2002).

    Article  ADS  Google Scholar 

  10. S. Yu. Gus’kov, D. V. Il’in, I. Limpoukh, O. Klimo, and V. E. Sherman, Plasma Phys. Rep. 36, 473 (2010).

    Article  ADS  Google Scholar 

  11. S. Yu. Gus’kov and N. V. Zmitrenko, Plasma Phys. Rep. 38, 863 (2012).

    Article  ADS  Google Scholar 

  12. V. A. Shcherbakov, Sov. J. Plasma Phys. 9, 240 (1983).

    Google Scholar 

  13. R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald, and A. A. Solodov, Phys. Rev. Lett. 98, 155001 (2007).

    Article  ADS  Google Scholar 

  14. S. I. Anisimov, R. P. Drake, S. Gauthier, E. E. Meshkov, and S. I. Abarzhi, Philos. Trans. Royal Soc. A 371, 20130266 (2013).

    Article  ADS  Google Scholar 

  15. E. N. Avrorin, A. A. Bunatyan, A. D. Gadzhiev, K. A. Mustafin, A. Sh. Nurbakov, V. N. Pisarev, L. P. Feoktistov, V. D. Frolov, and L. I. Shibarshov, Sov. J. Plasma Phys. 10, 298 (1984).

    Google Scholar 

  16. S. Atzeni, Phys. Plasmas 6, 3316 (1999).

    Article  ADS  Google Scholar 

  17. A. Caruso and V. A. Pais, Nucl. Fusion 36, 745 (1996).

    Article  ADS  Google Scholar 

  18. A. Caruso and C. Strangio, Laser Part. Beams 19, 295 (2001).

    Article  ADS  Google Scholar 

  19. K. V. Khishchenko and A. A. Charakhch’yan, Vopr. At. Nauki Tekh., Ser. Mat. Model. Fiz. Protsess., No. 3, 30 (2013).

    Google Scholar 

  20. A. A. Charakhch’yan, V. I. Gryn’, and K. V. Khishchenko, in Physics of Extreme States of Matter 2013, Ed. by V. E. Fortov (Joint Inst. for High Temperature, Russ. Acad. Sci., Moscow, 2013), p. 14.

  21. A. A. Charakhch’yan and K. V. Khishchenko, Plasma Phys. Controlled Fusion 55, 105011 (2013).

    Article  ADS  Google Scholar 

  22. M. M. Basko, Physics of Inertial Confinement Fusion (MIFI, Moscow, 2009) [in Russian].

    Google Scholar 

  23. P. P. Pashinin and A. M. Prokhorov, Sov. Phys. JETP 35, 101 (1972).

    ADS  Google Scholar 

  24. C. Stöckl and G. D. Tsakiris, Laser Part. Beams 9, 725 (1991).

    Article  ADS  Google Scholar 

  25. V. V. Prut, V. A. Khrabrov, V. V. Matveev, and S. A. Shibaev, JETP Lett. 29, 30 (1979).

    ADS  Google Scholar 

  26. G. V. Dolgoleva and A. V. Zabrodin, Vopr. At. Nauki Tekh., Ser. Mat. Model. Fiz. Protsess., No. 2, 23 (2006).

    Google Scholar 

  27. A. J. Kemp, M. M. Basko, and J. Meyer-ter-Vehn, Nucl. Fusion 43, 16 (2003).

    Article  ADS  Google Scholar 

  28. K. V. Khishchenko, J. Phys. Conf. Ser. 98, 032023 (2008).

    Article  ADS  Google Scholar 

  29. N. N. Kalitkin and L. V. Kuz’mina, Preprint No. 35 (Inst. of Applied Mathematics, USSR Acad. Sci., Moscow, 1975).

    Google Scholar 

  30. Yu. V. Afanas’ev, E. G. Gamalii, and V. B. Rozanov, Tr. FIAN 134, 10 (1982).

    Google Scholar 

  31. N. N. Kalitkin and D. P. Kostomarov, Mat. Model. 18, 67 (2006).

    MATH  MathSciNet  Google Scholar 

  32. V. P. Silin, Introduction to the Kinetic Theory of Gases (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  33. A. A. Charakhch’yan, V. I. Gryn’, and K. V. Khishchenko, J. Appl. Mech. Tech. Phys. 52, 501 (2011).

    Article  ADS  MATH  Google Scholar 

  34. K. Brueckner and S. Jorna, Rev. Mod. Phys. 46, 325 (1974).

    Article  ADS  Google Scholar 

  35. J. D. Lindl, Phys. Plasmas 2, 3933 (1995).

    Article  ADS  Google Scholar 

  36. S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion (Oxford Univ. Press, Oxford, 2004)

    Book  Google Scholar 

  37. J. J. Duderstadt and G. A. Moses, Inertial Confinement Fusion (Wiley, New York, 1982).

    Google Scholar 

  38. O. B. Vygovskii, D. A. Il’in, A. A. Levkovskii, V. B. Rozanov, and V. E. Sherman, Preprint No. 72 (Lebedev Physical Inst. USSR Acad. Sci., Moscow, 1990).

    Google Scholar 

  39. D. V. Sivukhin, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Atomizdat, Moscow, 1964; Consultants Bureau, New York, 1968), Vol. 4.

  40. S. Yu. Gus’kov and V. B. Rozanov, Tr. FIAN 134, 115 (1982).

    Google Scholar 

  41. K. V. Khishchenko and A. A. Charakhch’yan, Vopr. At. Nauki Tekh., Ser. Mat. Model. Fiz. Protsess. (in press).

  42. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Academic, New York, 1967).

    Google Scholar 

  43. G. I. Marchuk, V. S. Imshennik, and M. M. Basko, Phys. Usp. 52, 267 (2009).

    Article  ADS  Google Scholar 

  44. Ya. B. Zel’dovich, Sov. Phys. Usp. 18, 79 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  45. S. K. Godunov, Mat. Sborn. 47, 271 (1959).

    MathSciNet  Google Scholar 

  46. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, Oxford, 1987).

    Google Scholar 

  47. L. I. Sedov, Similarity and Dimensional Methods in Mechanics (Nauka, Moscow, 1972; CRC, Boca Raton, 1993).

    MATH  Google Scholar 

  48. G. Guderley, Luftfahrtforschung 19, 302 (1942).

    MathSciNet  Google Scholar 

  49. K. P. Stanyukovich, Unsteady Motion of Continuous Media (Gostekhteorizdat, Moscow, 1955) [in Russian].

    Google Scholar 

  50. E. I. Zababakhin and I. E. Zababakhin, Unlimited Cumulation Phenomena (Nauka, Moscow, 1990).

    Google Scholar 

  51. O. E. Vlasov, Blast Waves (VIA RKKA, Moscow, 1937) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Khishchenko.

Additional information

Original Russian Text © K.V. Khishchenko, A.A. Charakhch’yan, 2015, published in Fizika Plazmy, 2015, Vol. 41, No. 3, pp. 240–251.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khishchenko, K.V., Charakhch’yan, A.A. Collision of plane thermonuclear detonation waves in a preliminarily compressed DT mixture. Plasma Phys. Rep. 41, 220–230 (2015). https://doi.org/10.1134/S1063780X15020051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X15020051

Keywords

Navigation