Skip to main content
Log in

Extended plasma channels created by UV laser in air and their application to control electric discharges

  • Laser Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results are presented from a series of experimental and theoretical studies on creating weakly ionized extended plasma channels in atmospheric air by 248-nm UV laser radiation and their application to control long high-voltage discharges. The main mechanisms of air ionization by UV laser pulses with durations from 100 fs to 25 ns and intensities in the ranges of 3×1011–1.5×1013 and 3×106–3×1011 W/cm2, respectively, which are below the threshold for optical gas breakdown, as well as the main relaxation processes in plasma with a density of 109–1017 cm−3, are considered. It is shown that plasma channels in air can be efficiently created by amplitude-modulated UV pulses consisting of a train of subpicosecond pulses producing primary photoelectrons and a long UV pulse suppressing electron attachment and sustaining the density of free electrons in plasma. Different modes of the generation and amplification of trains of subterawatt subpicosecond pulses and amplitude-modulated UV pulses with an energy of several tens of joules were implemented on the GARPUN-MTW hybrid Ti:sapphire-KrF laser facility. The filamentation of such UV laser beams during their propagation in air over distances of up to 100 m and the parameters of the corresponding plasma channels were studied experimentally and theoretically. Laser initiation of high-voltage electric discharges and control of their trajectories by means of amplitude-modulated UV pulses, as well as the spatiotemporal structure of breakdowns in air gaps with length of up to 80 cm, were studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Penano, P. Sprangle, B. Hafizi, D. Gordon, R. Fernsler, and M. Scully, J. Appl. Phys. 111, 033105 (2012).

    ADS  Google Scholar 

  2. D. V. Koopman and T. D. Wilkenson, J. Appl. Phys. 42, 1883 (1971).

    ADS  Google Scholar 

  3. V. D. Zvorykin, F. A. Nikolaev, I. V. Kholin, A. Yu. Chugunov, and A. V. Shelobolin, Sov. J. Plasma Phys. 5, 638 (1979).

    ADS  Google Scholar 

  4. G. A. Askar’yan, Sov. Phys. JETP 28, 732 (1969).

    ADS  Google Scholar 

  5. M. Chateauneuf, S. Payeur, J. Dubois, and J.-C. Kieffer, Appl. Phys. Lett. 92, 091104 (2008).

    ADS  Google Scholar 

  6. V. D. Zvorykin, A. O. Levchenko, N. N. Ustinovskii, and I. V. Smetanin, JETP Lett. 91, 226 (2010).

    ADS  Google Scholar 

  7. V. V. Valuev, A. E. Dormidonov, V. P. Kandidov, S. A. Shlenov, V. N. Kornienko, and V. A. Cherepenin, J. Comm. Technol. Electron. 55, 208 (2010).

    Google Scholar 

  8. V. D. Zvorykin, A. O. Levchenko, A. V. Shutov, E. V. Solomina, N. N. Ustinovskii, and I. V. Smetanin, Phys. Plasmas 19, 033509 (2012).

    ADS  Google Scholar 

  9. V. D. Zvorykin, A. O. Levchenko, and N. N. Ustinovskii, Quant. Electron. 41, 227 (2011).

    ADS  Google Scholar 

  10. X. M. Zhao, Y. C. Wang, J.-C. Diels, and J. Elizondo, IEEE J. Quant. Electron. 31, 599 (1995).

    ADS  Google Scholar 

  11. A. D. Starikov and Yu. A. Rezunkov, Opt. Zh. 15, 3 (1999).

    Google Scholar 

  12. E. M. Bazelyan and Yu. P. Raizer, Lightning Physics and Lightning Protection (Nauka, Moscow, 2001; IOP, Bristol, 2000).

    Google Scholar 

  13. V. A. Danilychev and V. D. Zvorykin, Trudy FIAN 142, 117 (1983).

    Google Scholar 

  14. V. V. Apollonov, L. M. Vasilyak, S. Yu. Kazantsev, I. G. Kononov, D. N. Polyakov, A. V. Saifulin, and K. N. Firsov, Quant. Electron. 32, 115 (2002).

    ADS  Google Scholar 

  15. V. V. Apollonov and N. V. Pletnev, Quant. Electron. 42, 130 (2012).

    ADS  Google Scholar 

  16. H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Woste, Eur. Phys. J. Appl. Phys. 20, 183 (2002).

    ADS  Google Scholar 

  17. http://www.teramobile.org/publis.html

  18. L. Berge, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, Rep. Prog. Phys. 70, 1633 (2007).

    ADS  Google Scholar 

  19. A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).

    ADS  Google Scholar 

  20. V. P. Kandidov and S. A. Shlenov, in Deep Channeling and Filamentation of High-Power Laser Radiation in Matter, Ed. by V. Ya. Panchenko (Interkontakt Nauka, Moscow, 2009) [in Russian].

  21. G. Mechain, G. Mejean, R. Ackerman, P. Rohwetter, Y.-B. Andre, J. Kasparian, B. Prade, K. Stelmaszczyk, J. Yu. E. Salmon, W. Winn, L. A. Vern, A. Mysyrowicz, R. Saurbrey, L. Woste, and J.-P. Wolf, Appl. Phys. 80, 785 (2005).

    Google Scholar 

  22. M. Rodriguez, R. Bourayon, G. Mejean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eisloffel, U. Laux, A. P. Hatzes, R. Saurbrey, L. Woste, and J.-P. Wolf, Phys. Rev. E 69, 036607 (2004).

    ADS  Google Scholar 

  23. J. Kasparian and J.-P. Wolf, Opt. Express 16, 466 (2008).

    ADS  Google Scholar 

  24. V. P. Kandidov, S. A. Shlenov, and O. G. Kosareva, Quant. Electron. 39, 205 (2009).

    ADS  Google Scholar 

  25. S. L. Chin, Springer Series on Atomic, Optical, and Plasma Physics, Vol. 55: Femtosecond Laser Filamentation (Springer, New York, 2010).

    Google Scholar 

  26. A. Couairon and L. Berge, Phys. Rev. Lett. 88, 135003 (2002).

    ADS  Google Scholar 

  27. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).

    Google Scholar 

  28. H. Yang, J. Zhang, Y. Li, J. Zhang, Y. Li, Z. Chen, H. Teng, Z. Wei, and Z. Sheng, Phys. Rev. E 66, 016406 (2002).

    ADS  Google Scholar 

  29. J. Y. Zhu, Z. Ji, Y. Deng, J. Liu, R. Li, and Z. Xu, Opt. Express 14, 4915 (2006).

    ADS  Google Scholar 

  30. R. V. Hodges, L. C. Lee, and J. T. Moseley, J. Chem. Phys. 75, 2998 (1980).

    ADS  Google Scholar 

  31. P. Ling and R. R. Lucchese, J. Chem. Phys. 114, 9350 (2001).

    ADS  Google Scholar 

  32. G. Méjean, R. Ackerman. J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, K. Rethmeier, and W. Kalkner, Appl. Phys. Lett. 88, 021101 (2006).

    ADS  Google Scholar 

  33. A. A. Ionin, S. I. Kudryashov, A. O. Levchenko, L. V. Seleznev, A. V. Shutov, D. V. Sinitsyn, I. V. Smetanin, N. N. Ustinovsky, and V. D. Zvorykin, Appl. Phys. Lett. 100, 104105 (2012).

    ADS  Google Scholar 

  34. A. A. Ionin, S. V. Kudryashov, A. O. Levchenko, L. V. Seleznev, A. V. Shutov, D. V. Sinitsyn, I. V. Smetanin, N. N. Ustinovsky, and V. D. Zvorykin, AIP Conf. Proc. 1464, 711 (2012).

    ADS  Google Scholar 

  35. A. A. Ionin, S. V. Kudryashov, A. O. Levchenko, L. V. Seleznev, A. V. Shutov, D. V. Sinitsyn, I. V. Smetanin, N. N. Ustinovsky, and V. D. Zvorykin, SPIE Newsroom, December 5, 2012.

    Google Scholar 

  36. V. D. Zvorykin, A. A. Ionin, A. O. Levchenko, L. V. Seleznev, A. V. Shutov, D. V. Sinitsyn, I. V. Smetanin, and N. N. Ustinovskii, Nuclear Instrum. Meth. Phys. Res. 309, 218 (2013).

    ADS  Google Scholar 

  37. V. D. Zvorykin, A. A. Ionin, A. O. Levchenko, G. A. Mesyats, L. V. Seleznev, D. V. Sinitsyn, I. V. Smetanin, E. A. Sunchugasheva, N. N. Ustinovskii, and A. V. Shutov, Quant. Electron. 43, 332 (2013).

    ADS  Google Scholar 

  38. V. D. Zvorykin, A. A. Ionin, A. O. Levchenko, G. A. Mesyats, L. V. Seleznev, D. V. Sinitsyn, I. V. Smetanin, E. A. Sunchugasheva, N. N. Ustinovskii, and A. V. Shutov, Quant. Electron. 43, 339 (2013).

    ADS  Google Scholar 

  39. A. V. Shutov, I. V. Smetanin, A. A. Ionin, D. V. Sinitsyn, N. N. Ustinovskii, and V. D. Zvorykin, Appl. Phys. Lett. 103, 034106 (2013).

    ADS  Google Scholar 

  40. I. A. Kossyi, A. Yu. Kostinskii, A. A. Matveev, and V. P. Silakov, Trudy IOFAN 47, 37 (1994).

    Google Scholar 

  41. J. Schwarz, P. Rambo, and J. C. Diels, Appl. Phys. B 72, 343 (2001).

    ADS  Google Scholar 

  42. N. Khan, N. Mariun, I. Aris, and J. Yeak, New J. Phys. 4, 1 (2002).

    Google Scholar 

  43. L. L. Losev and V. I. Soskov, Quant. Electron. 19, 46 (1989).

    ADS  Google Scholar 

  44. L. L. Losev and V. I. Soskov, Opt. Atmos. Okeana 3, 842 (1990).

    Google Scholar 

  45. T. Aota, E. Takahashi, L. L. Losev, T. Tabuchi, S. Kato, Y. Matsumoto, I. Okuda, and Y. Owadano, Jpn. J. Appl. Phys. 44, 3313 (2005).

    ADS  Google Scholar 

  46. F. Bloch, Phys. Rev. 48, 689 (1935).

    ADS  MATH  Google Scholar 

  47. C. L. Longmire, Phys. Fluids 27, 2694 (1984).

    ADS  Google Scholar 

  48. H. D. Ladouceur, A. P. Baronavski, D. Lohrmann, P. W. Grounds, and P. G. Girardi, Optics Commun. 189, 107 (2001).

    ADS  Google Scholar 

  49. L. M. Chanin, A. V. Phelps, and M. A. Biondi, Phys. Rev. 128, 219 (1962).

    ADS  Google Scholar 

  50. D. Spence and G. J. Schulz, Phys. Rev. A 5, 2 (1972).

    Google Scholar 

  51. A. V. Phelps, in Defense Nuclear Agency Reaction Rate Handbook, Ed. by M. H. Bortner and T. Baurer (DASIAC, Santa Barbara, CA, 1972), Ch. 17.

  52. N. L. Aleksandrov, Sov. Phys. Usp. 31, 101 (1988).

    ADS  Google Scholar 

  53. D. S. Burch, S. J. Smith, and L. M. Branscomb, Phys. Rev. 112, 171 (1958).

    ADS  Google Scholar 

  54. L. Dinu, G. C. Groenenboom, and W. J. van der Zande, J. Chem. Phys. 119, 8864 (2003).

    ADS  Google Scholar 

  55. B. Zhou, S. Akturk, B. Prade, Y.-B. Andre, A. Houard, Y. Liu, M. Franco, C. D’Amico, E. Salmon, Z. Hao, N. Lascoux, and A. Mysyrowicz, Opt. Express 17, 11450 (2009).

    ADS  Google Scholar 

  56. Encyclopedia of Physics, Ed. by A. M. Prokhorov (Sovetskaya Entsiklopediya, Moscow, 1988), Vol. 1 [in Russian].

    Google Scholar 

  57. D. F. Gordon, A. Ting, R. F. Hubbard, E. Briscoe, C. Manka, S. P. Slinker, A. P. Baronavski, H. D. Ladouceur, P. W. Grounds, and P. G. Girardi, Phys. Plasmas 10, 4530 (2003).

    ADS  Google Scholar 

  58. W. J. Wiegand, in Applied Atomic Collision Physics, Vol. 3: Gas Lasers, Ed. by E. W. McDaniel and W. L. Nighan (Academic, New York, 1982), p. 71.

  59. L. G. H. Huxley and R. W. Crompton, The Diffusion and Drift of Electrons in Gases (Wiley, New York, 1974).

    Google Scholar 

  60. N. A. Popov, Plasma Phys. Rep. 36, 812 (2010).

    ADS  Google Scholar 

  61. N. G. Basov, A. D. Vadkovskii, V. D. Zvorykin, G. E. Metreveli, and A. F. Suchkov, Quant. Electron. 24, 13 (1994).

    ADS  Google Scholar 

  62. V. D. Zvorykin, N. V. Didenko, A. A. Ionin, I. V. Kholin, A. V. Konyashchenko, O. N. Krokhin, A. O. Levchenko, A. O. Mavritskii, G. A. Mesyats, A. G. Molchanov, M. A. Rogulev, L. V. Seleznev, D. V. Sinitsyn, S. Yu. Tenyakov, N. N. Ustinovskii, and D. A. Zayarnyi, Laser Part. Beams 25, 435 (2007).

    Google Scholar 

  63. J. A. Guthrie, X. X. Wang, and L. J. Radziemski, Chem. Phys. Lett. 170, 117 (1990).

    ADS  Google Scholar 

  64. J. Bominaar, C. Shoemaecker, N. Dam, J. J. Ter Meulen, and G. C. Groenenboom, Chem. Phys. Lett. 435, 242 (2007).

    ADS  Google Scholar 

  65. R. Ogorzalek Loo, A. Sivaram, W. J. Marinelli, G.E. Hall, P. L. Houston, J. R. Wiesenfeld, and R. W. Field, J. Chem. Phys. 91, 5185 (1989).

    ADS  Google Scholar 

  66. E. L. Stupitskii, High Temp. 44, 172 (2006).

    Google Scholar 

  67. E. M. Belenov, V. A. Isakov, A. V. Nazarkin, and I. V. Smetanin, J. Sov. Laser Res. 13, 118 (1992).

    Google Scholar 

  68. A. V. Phelps, JILA Information Center Report No. 28 (University of Colorado, Boulder, CO, 1985), https://jila.colorado.edu/sites/default/files/assets/files/publications/JILA.ICR_.28.pdf

    Google Scholar 

  69. E. W. McDaniel, Collision Phenomena in Ionized Gases (Wiley, New York, 1964).

    Google Scholar 

  70. O. A. Gordeev, A. P. Kalinin, A. L. Komov, V. E. Lyusternik, E. V. Samuilov, I. A. Sokolova, and L. R. Fokin, in Reviews on Thermalphysic Properties of Materials (IVTAN, Moscow, 1985), No. 5, p. 55 [in Russian].

    Google Scholar 

  71. A. G. Engelhardt, A. V. Phelps, and C. G. Risk, Phys. Rev. 135, A1566 (1964).

    ADS  Google Scholar 

  72. Y. Itikawa and N. Mason, J. Phys. Chem. Ref. Data 34, 1 (2005).

    ADS  Google Scholar 

  73. R. Sh. Islamov, I. V. Kochetov, and V. G. Pevgov, Preprint No. 169 (Lebedev Physical Institute, USSR Acad. Sci., Moscow, 1977).

  74. L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).

    MathSciNet  Google Scholar 

  75. P. M. Johnson and C. E. Otis, Ann. Rev. Phys. Chem. 323, 139 (1981).

    ADS  Google Scholar 

  76. S. Katsumata and K. Kimura, Appl. Spectrosc. Rev. 27, 193 (1992).

    ADS  Google Scholar 

  77. W. K. Bischel, B. E. Perry, and D. R. Crosley, Chem. Phys. Lett. 82, 85 (1981).

    ADS  Google Scholar 

  78. M. Alden and W. Wendt, Opt. Commun. 69, 31 (1988).

    ADS  Google Scholar 

  79. T. F. Hanisco and A. C. Kummel, J. Phys. Chem. 95, 8565 (1991).

    Google Scholar 

  80. K. R. Lykke and B. D. Kay, J. Chem. Phys. 95, 2252 (1991).

    ADS  Google Scholar 

  81. A. Clark, C. Kosmidis, R. M. Deas, K. W. D. Ledingham, A. Marshall, J. Sander, and R. P. Singhal, J. Phys. D 26, 2107 (1993).

    ADS  Google Scholar 

  82. G. Laufer, A. S. Lee, and H. K. Chelliah, Appl. Opt. 36, 3278 (1997).

    ADS  Google Scholar 

  83. J. Way, J. Hummelt, and J. J. Scharer, Appl. Phys. 106, 083303 (2009).

    Google Scholar 

  84. R. J. Yokelson, R. J. Lipert, and W. A. Chupka, J. Phys. Chem. 97, 6153 (1992).

    Google Scholar 

  85. E. M. Belenov, P. G. Kryukov, A. V. Nazarkin, and I. V. Smetanin, Quant. Electron. 22, 1113 (1992).

    ADS  Google Scholar 

  86. I. A. Poluektov and A. V. Nazarkin, Quant. Electron. 11, 159 (1981).

    ADS  Google Scholar 

  87. S. N. Dixit and V. McKoy, J. Chem. Phys. 82, 3546 (1985).

    ADS  Google Scholar 

  88. S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, Sov. Phys. Usp. 10, 609 (1968).

    ADS  Google Scholar 

  89. V. D. Zvorykin, A. O. Levchenko, and N. N. Ustinovskii, Quant. Electron. 40, 381 (2010).

    ADS  Google Scholar 

  90. V. D. Zvorykin, A. A. Ionin, A. O. Levchenko, L. V. Seleznev, D. V. Sinitsyn, and N. N. Ustinovskii, J. Phys. Conf. Ser. 244, 032014 (2010).

    ADS  Google Scholar 

  91. V. D. Zvorykin, I. G. Lebo, and V. B. Rozanov, Kratk. Soobshch. Fiz., No. 9–10, 20 (1997).

    Google Scholar 

  92. P. Polynkin and J. V. Moloney, Appl. Phys. Lett. 99, 151103 (2011).

    ADS  Google Scholar 

  93. M. N. Shneider, A. M. Zheltikov, and R. B. Miles, Phys. Plasmas 18, 063509 (2011).

    ADS  Google Scholar 

  94. I. Gallimberti, G. Bacchiega, A. Bondiou-Clergerie, and P. Lalande, Compte Rendus Phys. 3, 1335 (2002).

    ADS  Google Scholar 

  95. E. M. Bazelyan and Yu. P. Raizer, Phys. Usp. 43, 701 (2000).

    ADS  Google Scholar 

  96. S. Tzortzakis, B. Prade, M. Franco, and A. Mysyrowicz, S. Hüller, and P. Mora, Phys. Rev. E 64, 057401 (2001).

    ADS  Google Scholar 

  97. N. L. Aleksandrov, E. M. Bazelyan, N. A. Bogatov, A. M. Kiselev, and A. N. Stepanov, Plasma Phys. Rep. 34, 1059 (2008).

    ADS  Google Scholar 

  98. H. Pepin, D. Comtois, F. Vidal, C. Y. Chien, A. Desparois, T. W. Johnston, J. C. Kieffer, B. La Fontaine, F. Martin, F. A. M. Rizk, C. Potvin, P. Couture, H. P. Mercure, A. Bondiou-Clergerie, P. Lalande, and I. Gallimberti, Phys. Plasmas 8, 2532 (2001).

    ADS  Google Scholar 

  99. D. Comtois, H. Pepin, F. Vidal, F. A. M. Rizk, C. Y. Chien, T. W. Johnston, J. C. Kieffer, B. LaFontaine, F. Martin, C. Potvin, H. P. Mercure, A. Bondiou-Clergerie, P. Lalande, and I. Gallimberti, IEEE Trans. Plasma Sci. 31, 377 (2003).

    ADS  Google Scholar 

  100. D. Comtois, C. Y. Chien, A. Desparois, F. Gerin, G. Jarry, T. W. Johnston, J. C. Kieffer, B. LaFontaine, F. Martin, R. Mawassi, H. Pepin, F. A. M. Rizk, F. Vidal, P. Couture, H. P. Mercure, C. Potvin, A. Bondiou-Clergerie, and I. Gallimberti, Appl. Phys. Lett. 76, 819 (2000).

    ADS  Google Scholar 

  101. B. Ackermann, G. Mechain, G. Mejean, R. Bourayou, M. Rodriguez, K. Stelmaszczyk, J. Kasparian, J. Yu, E. Salmon, S. Tzortzakis, Y.-B. André, J.-F. Bourrillon, L. Tamin, J.-P. Cascelli, C. Campo, C. Davoise, A. Mysyrowicz, R. Sauerbrey, L. Wöste, and J.-P. Wolf, Appl. Phys. B 82, 561 (2006).

    ADS  Google Scholar 

  102. T. Fujii, M. Miki, N. Goto, A. Zhidkov, T. Fukuchi, Y. Oishi, and K. Nemoto, Phys. Plasmas 15, 013107 (2008).

    ADS  Google Scholar 

  103. A. A. Antipov, A. Grasyuk, A. K. Zhigalkin, L. L. Losev, and V. I. Soskov, Sov. Phys. Tech. Phys. 36, 490 (1991).

    Google Scholar 

  104. M. A. Uman, The Lightning Discharge (Dover, Mineola, NY, 2001).

    Google Scholar 

  105. V. Rakov and M. Uman, Lightning: Physics and Effects (Cambridge Univ. Press, Cambridge, 2003).

    Google Scholar 

  106. Y. V. Sherbakov, V. B. Lebedev, and V. A. Rakov, in 2008 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Quebec, 2008 (IEEE Dielectrics and Electrical Insulation Society, Piscataway, 2008), p. 663.

    Google Scholar 

  107. J. Kasparian, R. Ackermann, Y.-B. André, G. Méchain, G. Méjean, B. Prade, Ph. Rohwetter, E. Salmon, K. Stelmaszczyk, J. Yu, A. Mysyrowicz, R. Sauerbrey, L. Woeste, and J.-P. Wolf, Opt. Express 16, 5757 (2008).

    ADS  Google Scholar 

  108. M. F. Wolford, J. D. Sethian, M. C. Myers, F. Hegeler, J. L. Giuliani, and S. P. Obenschain, Plasma Fusion Res. 8, 3404044 (2013).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Zvorykin.

Additional information

Original Russian Text © V.D. Zvorykin, A.A. Ionin, A.O. Levchenko, L.V. Seleznev, D.V. Sinitsyn, I.V. Smetanin, N.N. Ustinovskii, A.V. Shutov, 2015, published in Fizika Plazmy, 2015, Vol. 41, No. 2, pp. 125–162.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zvorykin, V.D., Ionin, A.A., Levchenko, A.O. et al. Extended plasma channels created by UV laser in air and their application to control electric discharges. Plasma Phys. Rep. 41, 112–146 (2015). https://doi.org/10.1134/S1063780X15010067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X15010067

Keywords

Navigation