Skip to main content
Log in

A possible mechanism of the enhancement and maintenance of the shear magnetic field component in the current sheet of the Earth’s magnetotail

  • Space Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The influence of the shear magnetic field component, which is directed along the electric current in the current sheet (CS) of the Earth’s magnetotail and enhanced near the neutral plane of the CS, on the nonadiabatic dynamics of ions interacting with the CS is studied. The results of simulation of the nonadiabatic ion motion in the prescribed magnetic configuration similar to that observed in the magnetotail CS by the CLUSTER spacecraft demonstrated that, in the presence of some initial shear magnetic field, the north-south asymmetry in the ion reflection/refraction in the CS is observed. This asymmetry leads to the formation of an additional current system formed by the oppositely directed electric currents flowing in the northern and southern parts of the plasma sheet in the planes tangential to the CS plane and in the direction perpendicular to the direction of the electric current in the CS. The formation of this current system perhaps is responsible for the enhancement and further maintenance of the shear magnetic field near the neutral plane of the CS. The CS structure and ion dynamics observed in 17 intervals of the CS crossings by the CLUSTER spacecraft is analyzed. In these intervals, the shear magnetic field was increased near the neutral plane of the CS, so that the bell-shaped spatial distribution of this field across the CS plane was observed. The results of the present analysis confirm the suggested scenario of the enhancement of the shear magnetic field near the neutral plane of the CS due to the peculiarities of the nonadiabatic ion dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. F. Ness, J. Geophys. Res. 70, 2989 (1965).

    Article  ADS  Google Scholar 

  2. M. Øieroset, T. D. Phan, M. Fujimoto, R. P. Lin, and R. P. Lepping,, Nature 412, 414 (2001).

    Article  ADS  Google Scholar 

  3. R. Nakamura, W. Baumjohann, M. Fujimoto, Y. Asano, A. Runov, C. J. Owen, A. N. Fazakerley, B. Klecker, H. Rème, E. A. Lucek, M. Andre, and Y. Khotyaintsev, J. Geophys. Res. 113, 16 (2008).

    Google Scholar 

  4. J. Büchner and L. M. Zelenyi, Adv. Space Res. 11, 177 (1991).

    Article  ADS  Google Scholar 

  5. Z. Zhu and G. Parks, J. Geophys. Res. 98, 7603 (1993).

    Article  ADS  Google Scholar 

  6. R. L. Kaufmann, C. Lu, and D. J. Larson, J. Geophys. Res. 99,11, 277 (1994).

    Google Scholar 

  7. H. V. Malova, V. Y. Popov, O. V. Mingalev, I. V. Mingalev, M. N. Mel’nik, A. V. Artemyev, A. A. Petrukovich, D. C. Delcourt, C. Shen, and L. M. Zelenyi, J. Geophys. Res. 117, A04212 (2012).

    ADS  Google Scholar 

  8. R. Paolo, J. U. Brackbil, W. Daughton, and G. Lapenta, Phys. Plasmas 11, 4102 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  9. P. L. Pritchett and F. V. Coroniti, J. Geophys. Res. 109, A01220 (2004).

    ADS  Google Scholar 

  10. P. L. Pritchett and F. S. Mozer, J. Geophys. Res. 114, A11210 (2009).

    Article  ADS  Google Scholar 

  11. A. Frank, S. Bugrov, and V. Markov, Phys. Lett. A 373, 1460 (2009).

    Article  ADS  Google Scholar 

  12. D. H. Fairfield, J. Geophys. Res. 84, 1950 (1979).

    Article  ADS  Google Scholar 

  13. A. T. Y. Lui, Geophys. Monograph Ser. 28, 158 (1984).

    Google Scholar 

  14. V. A. Sergeev, Geomagn. Aeron. 27, 612 (1987).

    ADS  MathSciNet  Google Scholar 

  15. Z. Kaumaz, G. L. Siscoe, J. G. Luhmann, R. P. Lepping, and C. T. Russell, J. Geophys. Res. 99, 11 (1994).

    Article  Google Scholar 

  16. Z. J. Rong, W. X. Wan, C. Shen, X. Li, M. W. Dunlop, A. A. Petrukovich, L.-N. Hau, T. L. Zhang, H. Rème, A. M. Du, and E. J. Lucek, Geophys. Res. 117, A06216 (2012).

    ADS  Google Scholar 

  17. A. A. Petrukovich, J. Geophys. Res. 116, A07217 (2011).

    ADS  Google Scholar 

  18. A. V. Artemyev, A. A. Petrukovich, A. G. Frank, R. Nakamura, and L. M. Zelenyi, J. Geophys. Res. 118, 2789 (2013).

    Article  Google Scholar 

  19. A. Balogh, C. M. Carr, M. H. Acuña, M. W. Dunlop, T. J. Beek, P. Brown, K.-H. Fornacon, E. Georgescu, K.-H. Glassmeier, J. Harris, G. Musmann, T. Oddy, and K. Schwingenschuh, Ann. Geophys. 19, 1207 (2001).

    Article  ADS  Google Scholar 

  20. H. Rème, C. Aoustin, J. M. Bosqued, I. Dandouras, B. Lavraud, J.-A. Sauvaud, A. Barthe, J. Bouyssou, Th. Camus, O. Coeur-Joly, A. Cros, J. Cuvilo, F. Ducay, Y. Garbarowitz, J. L. Medale, E. Penou, H. Perrier, D. Romefort, J. Rouzaud, C. Vallat, D. Alcaydé, C. Jacquey, C. Mazelle, C. d’Uston, E. Möbius, L. M. Kistler, K. Crocker, M. Granoff, C. Mouikis, M. Popecki, M. Vosbury, B. Klecker, D. Hovestadt, H. Kucharek, E. Kuenneth, G. Paschmann, M. Scholer, N. Sckopke, E. Seidenschwang, C. W. Carlson, D. W. Curtis, C. Ingraham, R. P. Lin, J. P. McFadden, G. K. Parks, T. Phan, V. Formisano, E. Amata, M. B. Bavassano-Cattaneo, P. Baldetti, R. Bruno, G. Chionchio, A. Di Lellis, M. F. Marcucci, G. Pallocchia, A. Korth, P. W. Daly, B. Graeve, H. Rosenbauer, V. Vasyliunas, M. McCarthy, M. Wilber, L. Eliasson, R. Lundin, S. Olsen, E. G. Shelley, S. Fuselier, A. G. Ghielmetti, W. Lennartsson, C. P. Escoubet, H. Balsiger, R. Friedel, J.-B. Cao, R. A. Kovrazhkin, I. Papamastorakis, R. Pellat, J. Scudder, and B. Sonnerup, Ann. Geophys. 19, 1303 (2001).

    Article  ADS  Google Scholar 

  21. G. Chanteur, in Analysis Methods for Multi-Spacecraft Data, Ed. by G. Paschmann and P. W. Daly (European Space Agency, Paris, 1998), p. 349.

  22. P. Robert, M. W. Dunlop, A. Roux, and G. Chanteur, Analysis Methods for Multi-Spacecraft Data, Ed. by G. Paschmann and P. W. Daly (European Space Agency, Paris, 1998), p. 395.

  23. M. W. Dunlop, A. Balogh, K.-H. Glassmeier, and P. Robert, J. Geophys. Res. 107, 1384 (2002).

    Article  Google Scholar 

  24. J. Büchner and L. M. Zelenyi, J. Geophys. Res. 94, 11 (1989).

    Google Scholar 

  25. H. V. Malova, L. M. Zelenyi, V. Yu. Popov, D. Delcourt, A. Petrukovich, and A. Runov, Geophys. Rev. Lett. 34, L16108 (2007).

    Article  ADS  Google Scholar 

  26. X. H. Deng, H. Matsumoto, H. Kojima, T. Mukai, R. R. Anderson, W. Baumjohann, and R. Nakamura, J. Geophys. Res. 109, A05206 (2004).

    ADS  Google Scholar 

  27. E. E. Grigorenko, H. V. Malova, A. V. Artemyev, O. V. Mingalev, E. A. Kronberg, R. Koleva, P. W. Daly, J. B. Cao, J.-A. Sauvaud, C. J. Owen, and L. M. Zelenyi, J. Geophys. Res. 118, 3265 (2013).

    Article  Google Scholar 

  28. C. Liu, X. Feng, J. Guo, and Y. Ye, J. Geophys. Res. 118, 2087 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Grigorenko.

Additional information

Original Russian Text © E.E. Grigorenko, H.V. Malova, A.Yu. Malykhin, L.M. Zelenyi, 2015, published in Fizika Plazmy, 2015, Vol. 41, No. 1, pp. 92–106.s

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigorenko, E.E., Malova, H.V., Malykhin, A.Y. et al. A possible mechanism of the enhancement and maintenance of the shear magnetic field component in the current sheet of the Earth’s magnetotail. Plasma Phys. Rep. 41, 88–101 (2015). https://doi.org/10.1134/S1063780X1501002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X1501002X

Keywords

Navigation