Skip to main content
Log in

Electrical and chemical properties of XeCl*(308 nm) exciplex lamp created by a dielectric barrier discharge

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The aim of this work is to highlight, through numerical modeling, the chemical and the electrical characteristics of xenon chloride mixture in XeCl* (308 nm) excimer lamp created by a dielectric barrier discharge. A temporal model, based on the Xe/Cl2 mixture chemistry, the circuit and the Boltzmann equations, is constructed. The effects of operating voltage, Cl2 percentage in the Xe/Cl2 gas mixture, dielectric capacitance, as well as gas pressure on the 308-nm photon generation, under typical experimental operating conditions, have been investigated and discussed. The importance of charged and excited species, including the major electronic and ionic processes, is also demonstrated. The present calculations show clearly that the model predicts the optimal operating conditions and describes the electrical and chemical properties of the XeCl* exciplex lamp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Erofeev and V. F. Tarasenko, J. Phys. D 39, 3609 (2006).

    Article  ADS  Google Scholar 

  2. E. A. Sosnin, M. V. Erofeev, and V. F. Tarasenko, J. Phys. D 38, 3194 (2005).

    Article  ADS  Google Scholar 

  3. M. I. Lomaev, V. S. Skakun, and E. A. Sosnin, Phys. Usp. 46, 193 (2003).

    Article  ADS  Google Scholar 

  4. B. Eliasson and U. Kogelschatz, Appl. Phys. B 46, 299 (1988).

    Article  ADS  Google Scholar 

  5. M. V. Erofeev and V. F. Tarasenko, J. Phys. D 39, 3609 (2006).

    Article  ADS  Google Scholar 

  6. U. Kogelschatz, Pure Appl. Chem. 62, 1667 (1990).

    Article  Google Scholar 

  7. B. Gellert and U. Kogelschatz, Appl. Phys. B 52, 14 (1991).

    Article  ADS  Google Scholar 

  8. U. Kogelschatz, Appl. Surf. Sci. 54, 410 (1992).

    Article  ADS  Google Scholar 

  9. A. M. Braun, M. T. Maurette, and E. Oliveros, Photochemical Technology (Wiley, New York, 1991).

    Google Scholar 

  10. A. Yokatani, N. Takezoe, K. Kurosawa, et al., Appl. Phys. Lett. 69, 1399 (1996).

    Article  ADS  Google Scholar 

  11. M. C. Gonzalez and A. M. Braun, J. Photochem. Photobiol. A 93, 7 (1996).

    Article  Google Scholar 

  12. R. F. Scheir and B. F. Fencl, Heat. Pip. Air. Cond. J. 68, 109 (1996).

    Google Scholar 

  13. D. J. Elliott, Microlithography: Process Technology for IC Fabrication (McGraw-Hill, New York, 1986).

    Google Scholar 

  14. D. Collier and W. Pantley, Laser Focus World 34, 63 (1998).

    Google Scholar 

  15. N. Merbahi, N. Sewraj, F. Marchal, et al., J. Phys. D 37, 1664 (2004).

    Article  ADS  Google Scholar 

  16. U. Kogelschatz, B. Eliasson, and W. Egli, J. Phys. IV France 7, 4 (1997).

    Article  Google Scholar 

  17. H. Scheytt, H. Esrom, L. Prager, et al., in Non-Thermal Plasma Techniques for Pollution Control, Ed. by B. M. Penetrante and S. E. Schultheis (Springer-Verlag, Berlin, 1993), Nato ASI Series G34 (B), 91 (1993).

  18. R. Bussiahn, A. V. Pipa, and E. Kindel, Contrib. Plasma. Phys. 50, 1822 (2010).

    Article  Google Scholar 

  19. A. V. Pipa and R. Bussiahn, Contrib. Plasma Phys. 51, 850 (2011).

    Article  ADS  Google Scholar 

  20. R. P. Mildren and R. J. Carman, J. Phys. D 34, 1 (2001).

    Article  ADS  Google Scholar 

  21. J. Y. Zhang and I. W. Boyd, App. Surf. Sci. 168, 296 (2000).

    Article  ADS  Google Scholar 

  22. R. J. Carman, R. P. Mildren, B. K. Ward, et al., J. Phys. D 37, 2399 (2004).

    Article  ADS  Google Scholar 

  23. A. Oda, H. Sugawara, Y. Sakai, et al., J. Phys. D 33, 1507 (2000).

    Article  ADS  Google Scholar 

  24. Sz. Beleznai, G. Mihajlik, A. Agod, et al., J. Phys. D 39, 3777 (2006).

    Article  ADS  Google Scholar 

  25. E. A. Bogdanov, A. A. Kudryavtsev, R. P. Arslanbekov, et al., J. Phys. D 37, 2987 (2004).

    Article  ADS  Google Scholar 

  26. A. Oda, Y. Sakai, H. Akashi, et al., J. Phys. D 32, 2726 (1999).

    Article  ADS  Google Scholar 

  27. S. Liu and M. Neiger, J. Phys. D 36, 3144 (2003).

    Article  ADS  Google Scholar 

  28. R. J. Carman and R. P. Mildren, J. Phys. D 36, 19 (2003).

    Article  ADS  Google Scholar 

  29. R. J. Carman and R. P. Mildren, IEEE. Trans. Plasma Sci. 30, 154 (2002).

    Article  ADS  Google Scholar 

  30. T. Shiga, L. C. Pitchford, J. P. Boeuf, et al., J. Phys. D 36, 512 (2003).

    Article  ADS  Google Scholar 

  31. Sz. Beleznai, G. Mihajlik, I. Maros, et al., J. Phys. D 43, 015203 (2010).

    Article  ADS  Google Scholar 

  32. H. Piquet, S. Bhosle, R. Diez, et al., Quant. Electron. 42, 157 (2012).

    Article  ADS  Google Scholar 

  33. A. Belasri, S. Bendella, and T. Baba-Hamed, Phys. Plasmas 15, 053502 (2008).

    Article  ADS  Google Scholar 

  34. A. Belasri, K. Khodja, S. Bendella, et al., J. Phys. D 43, 445202 (2010).

    Article  ADS  Google Scholar 

  35. G. N. Zvereva, Opt. Spectrosc. 94, 191 (2003).

    Article  ADS  Google Scholar 

  36. A. Belasri and Z. Harrache, Plasma Chem. Plasma Process. 31, 787 (2011).

    Article  Google Scholar 

  37. S. Bollanti, G. Clementi, P. Di Lazzaro, et al., IEEE. Trans. Plasma Sci. 27, 211 (1999).

    Article  ADS  Google Scholar 

  38. A. M. Boichenko, V. S. Skakun, V. F. Transenko, et al., Laser Phys. 10, 540 (2000).

    Google Scholar 

  39. J. H. Kolts and D. W. Setser, J. Chem. Phys. 68, 4848 (1978).

    Article  ADS  Google Scholar 

  40. S.-Y. Jou, C.-T. Hung, Y.-M. Chiu, et al., Plasma Chem. Plasma Process. 30, 907 (2010).

    Article  Google Scholar 

  41. Sz. Beleznai, G. Mihajlik, I. Maros, et al., J. Phys. D 41, 115202 (2008).

    Article  ADS  Google Scholar 

  42. Z. Harrache, M. D. Calzada, and A. Belasri, Plasma Phys. Rep. 37, 904 (2011).

    Article  ADS  Google Scholar 

  43. C. W. Gear, Numerical Initial Value Problem in Ordinary Differential Equations (Prentice-Hall, Enlewood Cliffs, NJ, 1971).

    Google Scholar 

  44. W. L. Morgan, J. P. Boeuf, and L. C. Pitchford, The Siglo Database (CPAT and Kinema Software, Monument, CO, 1995–1998).

    Google Scholar 

  45. E. Despiau-Pujo and P. Chabert, Plasma Sources Sci. Technol. 18, 045028 (2009).

    Article  ADS  Google Scholar 

  46. F. Kannari, D. Kimura, and J. J. Ewing, J. Appl. Phys. 68, 2615 (1990).

    Article  ADS  Google Scholar 

  47. S. V. Avtaeva, B. Saghi, and B. Rahmani, IEEE Trans. Plasma Sci. 39, 1814 (2011).

    Article  ADS  Google Scholar 

  48. E. G. Thorsteinsson and J. T. Gudmundsson, J. Phys. D 43, 115201 (2010).

    Article  ADS  Google Scholar 

  49. H. Lück, D. Loffhagen, and W. Bötticher, Appl. Phys. B 58, 1123 (1994).

    Article  ADS  Google Scholar 

  50. O. Lamrous, A. Gaouar, and M. Yousfi, J. Appl. Phys. 79, 6775 (1996).

    Article  ADS  Google Scholar 

  51. M. R. Flannery and T. P. Yang, Appl. Phys. Lett. 32, 327 (1978).

    Article  ADS  Google Scholar 

  52. R. Riva, M. Legentil, S. Pasquiers, et al., J. Phys. D 28, 856 (1995).

    Article  ADS  Google Scholar 

  53. D. L. Baulch, J. Duxbury, S. J. Grant, et al., J. Phys. Chem. Ref. Data 10, 1 (1981).

    Article  Google Scholar 

  54. Y. Salamero, A. Birot, H. Brunet, et al., J. Chem. Phys. 80, 4774 (1984).

    Article  ADS  Google Scholar 

  55. P. K. Leichner, K. F. Palmer, J. D. Cook, et al., Phys. Rev. A 13, 1787 (1976).

    Article  ADS  Google Scholar 

  56. H. Hokazono, K. Midoridawa, M. Obara, et al., J. Appl. Phys. 56, 680 (1984).

    Article  ADS  Google Scholar 

  57. J. Galy, K. Aouame, A. Birot, et al., J. Phys. B 26, 477 (1993).

    Article  ADS  Google Scholar 

  58. A. N. Panchenko, A. S. Polyakevich, E. A. Sosnin, et al., Russ. Phys. J. 42, 557 (1999).

    Article  Google Scholar 

  59. A. M. Boichenko and S. I. Yakovlenko, Laser Phys. 14, 1 (2004).

    Google Scholar 

  60. A. Schwabedissen and W. Bötticher, Contrib. Plasma. Phys. 35, 5517 (1995).

    Article  ADS  Google Scholar 

  61. A. Schwabedissen, D. Loffhagen, T. Harmmer, et al., Appl. Phys. B 61, 175 (1995).

    Article  ADS  Google Scholar 

  62. J. Y. Zhang and I. W. Boyd, J. Appl. Phys. 80, 633 (1996).

    Article  ADS  Google Scholar 

  63. M. V. Erofeev and V. F. Tarasenko, Quant. Electron. 38, 401 (2008).

    Article  ADS  Google Scholar 

  64. J. Meunier, P. Belenguer, and J. P. Boeuf, J. Appl. Phys. 78, 731 (1995).

    Article  ADS  Google Scholar 

  65. J. Ouyang, F. He, J. Miao, et al., J. Appl. Phys. 101, 043303 (2007).

    Article  ADS  Google Scholar 

  66. J. Xu, W. Liu, R. Liang, et al., Plasma Sci. Technol. 3, 1027 (2001).

    Article  ADS  Google Scholar 

  67. A. Oda, H. Sugawara, Y. Sakai, et al., J. Phys. D 33, 1507 (2000).

    Article  ADS  Google Scholar 

  68. R. Brodmann and G. Zimmerer, J. Phys. B 10, 3395 (1977).

    Article  ADS  Google Scholar 

  69. X. Xu, PhD thesis (University of Illinois, Urbana-Champaign, IL, 2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Harrache.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baadj, S., Harrache, Z. & Belasri, A. Electrical and chemical properties of XeCl*(308 nm) exciplex lamp created by a dielectric barrier discharge. Plasma Phys. Rep. 39, 1043–1054 (2013). https://doi.org/10.1134/S1063780X13120015

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X13120015

Keywords

Navigation