Skip to main content
Log in

Automated diagnostics of a magnetron discharge plasma based on atomic molecular emission spectra

  • Plasma Diagnostics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A software-hardware complex intended for investigating spatial distributions of the plasma spectral emissivity is described. It allows us to record and identify the lines and systems of molecular bands in an automatic mode and to perform computer processing of spectra. Molecular bands of deuterium for different electronic-vibrational-rotational transitions are identified. The excitation temperatures of atomic levels, translational, rotational and vibrational temperatures are estimated for a discharge in a planar magnetron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. S. Danilin and V. K. Syrchin, Magnetron Sputtering Systems (Radio i Svyaz’, Moscow, 1982) [in Russian].

    Google Scholar 

  2. P. V. Kashtanov, B. M. Smirnov, and R. Hippler, Phys. Usp. 50, 455 (2007).

    Article  ADS  Google Scholar 

  3. N. G. Elistratov, A. M. Zimin, N. N. Vasil’ev, et al., Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez, No. 1, 34 (2005).

  4. A. V. Rogov and K. Yu. Vukolov, Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez, No. 1, 9 (2005).

  5. Z. Shi, T. Holbrook, K. Denghan, et al., Appl. Spectrosc. 46, 749 (1992).

    Article  ADS  Google Scholar 

  6. S. Umekawa, A. Nitta, K. Tanaka, et al., Mem. Fac. Eng. 36, 13 (1995).

    Google Scholar 

  7. C. Nouvellon, S. Konstantinidis, J. P. Dauchot, et al., J. Appl. Phys. 92, 32 (2002).

    Article  ADS  Google Scholar 

  8. Y. H. Kim and W. J. Cho, J. Korean Phys. Soc. 46, 926 (2004).

    MathSciNet  Google Scholar 

  9. J. Lopez, W. Zhu, A. Freilich, et al., J. Phys. D 38, 1769 (2005).

    Article  ADS  Google Scholar 

  10. A. A. Goncharov, A. N. Evsyukov, E. G. Kostin, et al., Tech. Phys. 55, 1200 (2010).

    Article  Google Scholar 

  11. V. M. Gradov, A. M. Zimin, S. E. Krivitskiy, and A. V. Shumov, Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez, No. 1, 64 (2009).

  12. A. M. Zimin, A. V. Shumov, S. E. Krivitskiy, and V. I. Troynov, Inform. Tekhnol., No. 6, 72 (2011).

  13. R. S. Freund, J. A. Schiavone, and H. M. Crosswhite, J. Phys. Chem. Ref. Data 14, 235 (1985).

    Article  ADS  Google Scholar 

  14. Yu. A. Lebedev and M. V. Mokeev, Plasma Phys. Rep. 29, 226 (2003).

    Article  ADS  Google Scholar 

  15. V. N. Ochkin, Spectroscopy of Low-Temperature Plasmas (Nauka, Moscow, 2006) [in Russian].

    Google Scholar 

  16. Probabilities of Optical Transitions in Diatomic Molecules, Ed. by R. V. Khokhlov (Nauka, Moscow, 1980) [in Russian]

    Google Scholar 

  17. N. E. Kuz’menko, L. A. Kuznetsova, and Yu. Ya. Kuzyakov, Frank-Condon Factors of Diatomic Molecules (MGU, Moscow, 1984) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Zimin.

Additional information

Original Russian Text © V.M. Gradov, A.M. Zimin, S.E. Krivitskiy, S.V. Serushkin, V.I. Troynov, 2012, published in Prikladnaya Fizika, 2012, No. 3, pp. 44–49.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gradov, V.M., Zimin, A.M., Krivitskiy, S.E. et al. Automated diagnostics of a magnetron discharge plasma based on atomic molecular emission spectra. Plasma Phys. Rep. 38, 1099–1104 (2012). https://doi.org/10.1134/S1063780X12110025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X12110025

Keywords

Navigation