Skip to main content
Log in

Self-organization of large-scale ULF electromagnetic wave structures in their interaction with nonuniform zonal winds in the ionospheric E region

  • Ionospheric Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A study is made of the generation and subsequent linear and nonlinear evolution of ultralow-frequency planetary electromagnetic waves in the E region of a dissipative ionosphere in the presence of a nonuniform zonal wind (a sheared flow). Hall currents flowing in the E region and such permanent global factors as the spatial nonuniformity of the geomagnetic field and of the normal component of the Earth’s angular velocity give rise to fast and slow planetary-scale electromagnetic waves. The efficiency of the linear amplification of planetary electromagnetic waves in their interaction with a nonuniform zonal wind is analyzed. When there are sheared flows, the operators of linear problems are non-self-conjugate and the corresponding eigenfunctions are nonorthogonal, so the canonical modal approach is poorly suited for studying such motions and it is necessary to utilize the so-called nonmodal mathematical analysis. It is shown that, in the linear evolutionary stage, planetary electromagnetic waves efficiently extract energy from the sheared flow, thereby substantially increasing their amplitude and, accordingly, energy. The criterion for instability of a sheared flow in an ionospheric medium is derived. As the shear instability develops and the perturbation amplitude grows, a nonlinear self-localization mechanism comes into play and the process ends with the self-organization of nonlinear, highly localized, solitary vortex structures. The system thus acquires a new degree of freedom, thereby providing a new way for the perturbation to evolve in a medium with a sheared flow. Depending on the shape of the sheared flow velocity profile, nonlinear structures can be either purely monopole vortices or vortex streets against the background of the zonal wind. The accumulation of such vortices can lead to a strongly turbulent state in an ionospheric medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. J. Cavalieri, R. J. Deland, J. A. Poterna, and F. Gavin, J. Atmos. Terr. Phys. 36, 561 (1974).

    Article  ADS  Google Scholar 

  2. A. H. Manson, C. E. Heek, and J. B. Gregory, J. Geophys. Res. 86, 9615 (1981).

    Article  ADS  Google Scholar 

  3. Z. S. Sharadze, N. V. Mosashvili, G. N. Pushkova, and L. A. Yudovich, Geomagn. Aéron. 29, 1032 (1989).

    Google Scholar 

  4. Q. H. Zhou, M. P. Sulzer, and C. A. Tepley, J. Geophys. Res. 102, 491 (1997).

    Google Scholar 

  5. L. S. Al’perovich, V. I. Drobzhev, V. M. Sorokin, et al., Geomagn. Aéron. 22, 797 (1982).

    Google Scholar 

  6. Z. S. Sharadze, G. A. Dzhaparidze, G. B. Kikvilashvili, et al., Geomagn. Aéron. 28, 446 (1988).

    Google Scholar 

  7. P. R. Fagundes, V. G. Pillat, M. J. Bolzan, et al., J. Geophys. Res. 110, 1302 (2005).

    Article  Google Scholar 

  8. V. Sorokin, Izv. Vyssh. Uchebn. Zaved., Radiofizika 31, 1169 (1988) [Radiophys. Quant. Electron. 31, 827 (1988)]].

    Google Scholar 

  9. V. P. Burmaka, L. S. Kostrov, and L. F. Chernogor, Radiofiz. Radioastron. 8(2), 143 (2003).

    Google Scholar 

  10. L. A. Haykowicz, Planet. Space Sci. 39, 583 (1991).

    Article  ADS  Google Scholar 

  11. V. A. Liperovskii, O. A. Pokhotelov, and S. A. Shalimov, Ionospheric Precursors of Earthquakes (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  12. K. Y. Cheng, J. Geophys. Res. 97, 16 (1992).

    Google Scholar 

  13. V. I. Drobzhev, G. F. Molotov, Z. S. Sharadze, et al., Ionos. Issled., No. 39, 61 (1986).

  14. N. Rishbeth, Geophys. Space Phys. 10, 799 (1972).

    Article  ADS  Google Scholar 

  15. G. D. Aburjania and A. G. Khantadze, Izv. RAN. Fiz. Atmos. Okeana 40(2), 231 (2004).

    Google Scholar 

  16. L. D. Shaefer, D. R. Rock, J. P. Lewis, et al., Detection of Explosive Events by Monitoring Acoustically-Induced Geomagnetic Perturbations (Lawrence Livermore National Laboratory, Livermore, CA, 1999).

    Google Scholar 

  17. O. A. Pokhotelov, V. A. Liperovskii, Yu. P. Fomichev, et al., Dokl. Akad. Nauk SSSR 321, 1168 (1991).

    ADS  Google Scholar 

  18. I. Tolstoy, J. Geophys. Res. 7, 1435 (1967).

    Article  ADS  Google Scholar 

  19. A. G. Kobaladze and A. G. Khantadze, Soobshch. Akad. Nauk Gruz. SSR 134(1), 97 (1989).

    ADS  Google Scholar 

  20. G. D. Aburjania and A. G. Khantadze, Geomagn. Aéron. 42, 245 (2002).

    Google Scholar 

  21. G. D. Aburjania, A. G. Khantadze, and O. A. Kharshiladze, Fiz. Plazmy 28, 633 (2002) [Plasma Phys. Rep. 28, 586 (2002)].

    Google Scholar 

  22. G. D. Aburjania, G. V. Jandieri, and A. G. Khantadze, J. Atmos. Sol.-Terr. Phys. 65, 661 (2003).

    Article  ADS  Google Scholar 

  23. G. D. Aburjania, Kh. Z. Chargazia, G. V. Jandieri, et al., Recent Res. Devel. Geophys. 5, 157 (2003).

    Google Scholar 

  24. G. D. Aburjania, A. G. Khantadze, and Kh. Z. Chargazia, Izv. RAN, Fiz. Atmos. Okeana 39, 525 (2003).

    Google Scholar 

  25. G. D. Aburjania, Kh. Z. Chargazia, G. V. Jandieri, et al., Ann. Geophys. 22, 1203 (2004).

    Article  ADS  Google Scholar 

  26. A. Khantadze, G. D. Aburjania, and D. G. Lominadze, Dokl. Akad. Nauk 406(2), 244 (2006) [Doklady Phys. 406, 82 (2006)].

    Google Scholar 

  27. G. D. Aburjania, Kh. Z. Chargazia, G. V. Jandieri, et al., Planet. Space Sci. 53, 881 (2005).

    Article  ADS  Google Scholar 

  28. G. D. Aburjania and A. Khantadze, Geomagn. Aéron 45, 673 (2005).

    Google Scholar 

  29. G. D. Aburjania, L. S. Alperovich, A. G. Khantadze, and O. A. Kharshiladze, Phys. Chem. Earth 31, 482 (2006).

    Google Scholar 

  30. G. D. Aburjania, Kh. Chargazia, and A. G. Khanadze, Sun Geosphere 1(2), 25 (2006).

    Google Scholar 

  31. G. D. Aburjania, L. S. Alperovich, A. G. Khantadze, and O. A. Kharshiladze, Adv. Space Res. 41, 624 (2008).

    Article  ADS  Google Scholar 

  32. E. Gossard and W. Hooke, Waves in the Atmosphere (Elsevier, Amsterdam, 1975; Mir, Moscow, 1978).

    Google Scholar 

  33. E. S. Kazimirovsky and V. D. Kokourov, Motion in the Ionosphere (Nauka, Novosibirsk, 1979) [in Russian].

    Google Scholar 

  34. S. C. Reddy, P. J. Schmid, and D. S. Hennigson, SIAM J. Appl. Math. 53, 15 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  35. L. N. Trefenthen, A. E. Trefenthen, S. C. Reddy, and T. A. Driscoll, Science 261, 578 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  36. G. D. Aburjania, A. G. Khantadze, and O. A. Kharshiladze, J. Geophys. Res. 111 (2006).

  37. A. D. D. Graik and W. O. Criminale, Proc. Roy. Soc. London A 406, 13 (1986).

    Article  ADS  Google Scholar 

  38. B. F. Farrell and P. J. Ioannou, J. Atmos. Sci. 50, 2201 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  39. G. D. Chagelishvili, A. D. Rogava, and D. G. Tsiklauri, Phys. Rev. E 53, 6028 (1996).

    Article  ADS  Google Scholar 

  40. Y. Kamide, Electrodynamical Processes in the Earth’s Ionosphere and Magnetosphere (Kyoto Sangyo University Press, Kyoto, 1980).

    Google Scholar 

  41. R. E. Dickinson, J. Atmos. Sci. 26(14), 73 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  42. B. N. Gershman, Dynamics of the Ionospheric Plasma (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  43. V. P. Dokuchaev, Izv. Vyssh. Uchebn. Zaved., Radiofizika 4(1), 6 (1961).

    Google Scholar 

  44. J. Pedlosky, Geophysical Fluid Dynamics (Springer, Heidelberg, 1981; Mir, Moscow, 1984), Vol. 1.

    Google Scholar 

  45. V. M. Sorokin and G. V. Fedorovich, Physics of Slow MHD Waves in the Ionospheric Plasma (Energoizdat, Moscow, 1982) [in Russian].

    Google Scholar 

  46. A. B. Mikhailovskii, Theory of Plasma Instabilities, Vol. 2: Instabilities of an Inhomogeneous Plasma (Atomizdat, Moscow, 1971; Consultants Bureau, New York, 1974).

    Google Scholar 

  47. K. Magnus, Schwingungen (Teubner, Stuttgart, 1961; Mir, Moscow, 1982).

    MATH  Google Scholar 

  48. Ya. B. Zel’dovich and A. D. Myshkis, Elements of Mathematical Physics (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  49. A. V. Timofeev, Resonance Phenomena in Plasma Oscillations (Fizmatlit, Moscow, 2000) [in Russian].

    Google Scholar 

  50. Intense Atmospheric Vortices, Ed. by L. Bengtsson and J. Lighthill (Springer-Verlag, New York, 1982; Mir, Moscow, 1985).

    Google Scholar 

  51. V. M. Cmyrev, V. A. Marchenko, O. A. Pokhotelov, et al., Planet. Space Sci. 39, 1025 (1991).

    Article  ADS  Google Scholar 

  52. M. V. Nezlin, CHAOS 4, 187 (1994).

    Article  ADS  Google Scholar 

  53. D. Sundkvist, V. Krasnoselskikh, P. K. Shukla, et al., Nature 436, 825 (2005).

    Article  ADS  Google Scholar 

  54. Ocean Physics, Vol. 2: Ocean Hydrodynamics, Ed. by V. M. Kamenkovich and A. S. Monin (Nauka, Moscow, 1978).

    Google Scholar 

  55. G. P. Williams and T. Yamagata, J. Atmos. Sci. 41, 453 (1984).

    Article  ADS  Google Scholar 

  56. M. V. Nezlin and G. P. Chernikov, Fiz. Plazmy 21, 975 (1995) [Plasma Phys. Rep. 21, 922 (1995)].

    Google Scholar 

  57. G. B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974; Mir, Moscow, 1977).

    MATH  Google Scholar 

  58. N. P. Shakina, Dynamics of Atmospheric Fronts and Cyclones (Gidrometizdat, Leningrad, 1985) [in Russian].

    Google Scholar 

  59. G. D. Aburjania, Self-Organization of Nonlinear Vortex Structures and Vortex Turbulence in Dispersive Media (KomKniga, Moscow, 2006) [in Russian].

    Google Scholar 

  60. V. I. Petviashvili and O. A. Pokhotelov, Solitary Waves in Plasmas and in the Atmosphere (Energoatomizdat, Moscow, 1989; Gordon & Breach, Reading, MA, 1992).

    Google Scholar 

  61. R. Mallier and S. A. Maslowe, Phys. Fluids 5, 1074 (1993).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. G. D. Aburjania, Kh. Z. Chargazia, L. M. Zeleny, and G. Zimbardo, Nonlin. Processes Geophys. 16, 11 (2009).

    Article  ADS  Google Scholar 

  63. J. R. Holton, The Dynamic Meteorology of the Stratosphere and Mesosphere (American Meteorological Society, Boston, 1975; Gigrometeoizdat, Leningrad, 1979).

    Google Scholar 

  64. G. D. Aburjania and G. Z. Machabeli, J. Geophys. Res. A 103, 9441 (1998).

    Article  ADS  Google Scholar 

  65. G. D. Aburjania, Fiz. Plazmy 22, 954 (1996) [Plasma Phys. Rep. 22, 864 (1996)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.D. Aburjania, Kh. Z. Chargazia, 2011, published in Fizika Plazmy, 2011, Vol. 37, No. 2, pp. 199–213.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aburjania, G.D., Chargazia, K.Z. Self-organization of large-scale ULF electromagnetic wave structures in their interaction with nonuniform zonal winds in the ionospheric E region. Plasma Phys. Rep. 37, 177–190 (2011). https://doi.org/10.1134/S1063780X10111017

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X10111017

Keywords

Navigation