Skip to main content
Log in

Photon-graviton amplitudes from the effective action

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

We report on the status of an ongoing effort to calculate the complete one-loop low-energy effective actions in Einstein-Maxwell theory with a massive scalar or spinor loop, and to use them for obtaining the explicit form of the corresponding M-graviton/N-photon amplitudes. We present explicit results for the effective actions at the one-graviton four-photon level, and for the amplitudes at the one-graviton two-photon level. As expected on general grounds, these amplitudes relate in a simple way to the corresponding four-photon amplitudes. We also derive the gravitational Ward identity for the 1PI one-graviton-N photon amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Kawai, D. C. Lewellen, and S. H. H. Tye, Nucl. Phys. B 269, 1 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  2. Z. Bern, Liv. Rev. Rel. 5, 5 (2002).

    MathSciNet  Google Scholar 

  3. Z. Bern, J. J. Carrasco, L. J. Dixon, H. Johansson, R. Roiban, “Amplitudes and Ultraviolet Behavior of N = 8 Supergravity,” in Proceedings of the 16th European Workshop on String Theory, Madrid, Spain, 2010. arXiv:1103.1848 [hep-th]

  4. S. Ferrara and A. Marrani, “Quantum Gravity Needs Supersymmetry,” in Proceedings of the International School of Subnuclear Physics, 49th Course: “Searching for the Unexpected at LHC and Status of Our Knowledge”, Erice, Italy, 2011. arXiv:1201.4328[hep-th]

  5. J. L. Rosner, Ann. Phys. (N. Y.) 44, 11 (1967).

    Article  ADS  Google Scholar 

  6. P. Cvitanovic, Nucl. Phys. B 127, 176 (1977).

    Article  ADS  Google Scholar 

  7. G. V. Dunne and C. Schubert, J. Phys.: Conf. Ser. 37, 59 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  8. S. Badger, N. E. J. Bjerrum-Bohr, and P. Vanhove, J. High Energy Phys. 0902, 038 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  9. S. D. Badger and J. M. Henn, Phys. Lett. B 692, 143 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  10. Z. Bern, A. De Freitas, and H. L. Wong, Phys. Rev. Lett. 84, 3531 (2000).

    Article  ADS  Google Scholar 

  11. B. R. Holstein, Am. J. Phys. 74, 1002 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  12. R. Armillis, C. Coriano, and L. Delle Rose, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 82, 064023 (2010).

    Article  Google Scholar 

  13. F. Bastianelli, J. M. Dávila, and C. Schubert, J. High Energy Phys. 0903, 086 (2009).

    Article  ADS  Google Scholar 

  14. J. M. Da’vila and C. Schubert, Classical Quantum Gravity 27, 075007 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  15. F. Bastianelli, O. Corradini, J. M. Dávila, and C. Schubert (in preparation).

  16. R. Karplus and M. Neuman, Phys. Rev. 83, 776 (1951).

    Article  ADS  MATH  Google Scholar 

  17. T. Binoth, G. Heinrich, T. Gehrmann, and P. Mastrolia, Phys. Lett. B 649, 422 (2007).

    Article  ADS  Google Scholar 

  18. G. Mahlon, Phys. Rev. D: Part. Fields 49, 2197 (1994).

    Article  ADS  Google Scholar 

  19. G. Mahlon, FermilabConf94/421T (1994).

  20. N. E. J. Bierrum-Bohr, J. High Energy Phys. 0810, 006 (2008).

    Article  ADS  Google Scholar 

  21. W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936).

    Article  ADS  Google Scholar 

  22. V. Weisskopf, K. Dan. Vidensk. Selsk. Mat. Fy. Medd. 14, 1 (1936).

    Google Scholar 

  23. L. C. Martin and C. Schubert, and V. M. Villanueva Sandoval, Nucl. Phys. B 668, 335 (2003).

    Article  ADS  MATH  Google Scholar 

  24. L. J. Dixon, “QCD and beyond,” in Proceedings of TASI’94, Singapore, Thailand, 1994, Ed. by D. Soper (World Scientific, Singapore, 1995), p. 539.

    Google Scholar 

  25. M. J. Duff and C. J. Isham, Phys. Lett. B 86, 157 (1979).

    Article  ADS  Google Scholar 

  26. I. T. Drummond and S. J. Hathrell, Phys. Rev. D: Part. Fields 22, 343 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  27. C. Schubert, Phys. Rep. 355, 73 (2001).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. F. Bastianelli and C. Schubert, J. High Energy Phys. 0502, 069 (2005).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Bastianelli.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bastianelli, F., Corradini, O., Dávila, J.M. et al. Photon-graviton amplitudes from the effective action. Phys. Part. Nuclei 43, 630–634 (2012). https://doi.org/10.1134/S1063779612050036

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779612050036

Keywords

Navigation