Skip to main content
Log in

On the Higgs mass generation mechanism in the Standard Model

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The mass-generation mechanism is the most urgent problem of modern particle physics. The discovery and study of the Higgs boson with the Large Hadron Collider at CERN are the highest priority steps to solve the problem. In this paper, the Standard Model Higgs mechanism of elementary particle mass generation is reviewed with pedagogical details. The discussion of the Higgs quadric self-coupling λ parameter and the bounds to the Higgs boson mass are presented. In particular, the unitarity, triviality, and stability constraints on the Higgs boson mass are discussed. The generation of a finite value for the λ parameter due to quantum corrections via effective potential is illustrated. Some simple predictions for the top quark and the Higgs boson masses are given when both the top Yukawa coupling and the Higgs self-coupling λ are equal to 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. E. Haber, hep-ph/0409008.

  2. J. F. Gunion, H. E. Haber, G. L. Kane, and S. Dawson, The Higgs Hunter’s Guide (Perseus Publishing, Cambridge, 2000).

    Google Scholar 

  3. J. F. Gunion, H. E. Haber, G. L. Kane, and S. Dawson, hep-ph/9302272.

  4. A. Djouadi, hep-ph/0503172.

  5. S. L. Glashow, Nucl. Phys. 22, 579–588 (1961).

    Article  Google Scholar 

  6. S. Weinberg, Phys. Rev. Lett. 19, 1264–1266 (1967).

    Article  ADS  Google Scholar 

  7. A. Salam, “The Standard Model,” in Elementary Particle Theory, Ed. by N. Svartholm (Almqvist and Wiksells, Stockholm, 1969), p. 367.

    Google Scholar 

  8. M. Gell-Mann, Phys. Lett. 8, 214–215 (1964).

    Article  ADS  Google Scholar 

  9. H. Fritzsch, M. Gell-Mann, and H. Leutwyler, Phys. Lett. B 47, 365–368 (1973).

    Article  ADS  Google Scholar 

  10. D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343–1346 (1973).

    Article  ADS  Google Scholar 

  11. H. D. Politzer, Phys. Rev. Lett. 30, 1346–1349 (1973).

    Article  ADS  Google Scholar 

  12. D. I. Kazakov, “Beyond the Standard Model,” in Proc. of CERN-JINR School of Phys., Egmond-aan-Zee, 1989 (CERN, Geneve, 1989).

    Google Scholar 

  13. M. K. Gaillard and M. Nikolic, Weak Interactions (IN2P3, Paris, 1977).

    Google Scholar 

  14. P. W. Higgs, Phys. Rev. Lett. 13, 508–509 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  15. P. W. Higgs, Phys. Rev. 145, 1156–1163 (1966).

    Article  MathSciNet  ADS  Google Scholar 

  16. T. W. B. Kibble, Phys. Rev. 155, 1554–1561 (1967).

    Article  ADS  Google Scholar 

  17. G. L. Kane, Modern Elementary Particle Physics (Addison-Wesley, Redwood, USA, 1987).

    Google Scholar 

  18. J. Goldstone, Nuovo Cim. 19, 154–164 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Goldstone, A. Salam, and S. Weinberg, Phys. Rev. 127, 965–970 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. W. M. Yao et al., J. Phys. G 33, 1–1232 (2006).

    Article  ADS  Google Scholar 

  21. I. J. R. Aitchison, “Field Theory and Standard Model,” in Proc. of Eur. School on High-Energy Phys., Tsakhkandzor, Armenia, Aug. 24–Sep. 6, 2003 (CERN, Geneve, 2004).

    Google Scholar 

  22. C. Grojean, “New Approaches to Electroweak Symmetry Breaking,” in Proc. of Les Houches Summer School on Theoretical Physics, Session 84: Particle Physics Beyond the Standard Model, Les Houches, France, Aug. 1–26, 2005 (Elsevier, Amsterdam, 2005).

    Google Scholar 

  23. D. J. E. Callaway, Nucl. Phys. B 233, 189 (1984).

    Article  ADS  Google Scholar 

  24. D. J. E. Callaway, Phys. Rep. 167, 241 (1988).

    Article  ADS  Google Scholar 

  25. R. F. Dashen and H. Neuberger, Phys. Rev. Lett. 50, 1897 (1983).

    Article  ADS  Google Scholar 

  26. Y.-Y. Wu, Phys. Rev. D 51, 5276–5284 (1995); hep-ph/9502379.

    Article  ADS  Google Scholar 

  27. S. R. Choudhury, Matma and Sukanta Dutta, Pramana 50, 163–171 (1998); hep-ph/9512422.

    Google Scholar 

  28. B. W. Lee, C. Quigg, and H. B. Thacker, Phys. Rev. D 16, 1519 (1977).

    Article  ADS  Google Scholar 

  29. M. S. Chanowitz and M. K. Gaillard, Nucl. Phys. B 261, 379 (1985).

    Article  ADS  Google Scholar 

  30. A. D. Linde, Phys. Lett. B 70, 306 (1977).

    Article  ADS  Google Scholar 

  31. S. Weinberg, Phys. Rev. Lett. 36, 294–296 (1976).

    Article  ADS  Google Scholar 

  32. S. R. Coleman and E. Weinberg, Phys. Rev. D 7, 1888–1910 (1973).

    Article  ADS  Google Scholar 

  33. M. Quiros, hep-ph/9703412.

  34. M. Sher, Phys. Rep. 179, 273–418 (1989).

    Article  ADS  Google Scholar 

  35. J. A. Casas, J. R. Espinosa, and M. Quiros, Phys. Lett. B 382, 374–382 (1996); hep-ph/9603227.

    Article  ADS  Google Scholar 

  36. S. P. Martin, hep-ph/9709356.

  37. T. Hambye and K. Riesselmann, hep-ph/9708416.

  38. C. F. Kolda and H. Murayama, JHEP 07, 035 (2000); hep-ph/0003170.

    Article  ADS  Google Scholar 

  39. L. B. Okun, Leptons and Quarks (Nauka, Moscow, 1990).

    Google Scholar 

  40. L. B. Okun, Leptons and Quarks (North-Holland, Amsterdam, Netherlands, 1982).

    Google Scholar 

  41. M. Schmaltz and D. Tucker-Smith, Ann. Rev. Nucl. Part. Sci. 55, 229–270 (2005); hep-ph/0502182.

    Article  ADS  Google Scholar 

  42. M. Quiros, hep-ph/0302189.

  43. Y. Nomura, JHEP 11, 050 (2003); hep-ph/0309189.

    Article  ADS  Google Scholar 

  44. E. H. Simmons, R. S. Chivukula, H. J. He, et al., AIP Conf. Proc. 857, 34–45 (2006); hep-ph/0606019.

    Article  ADS  Google Scholar 

  45. C. T. Hill and E. H. Simmons, Phys. Rep. 381, 235–402 (2003), hep-ph/0203079.

    Article  ADS  Google Scholar 

  46. J. F. Gunion and H. E. Haber, Phys. Rev. D 67, 075019 (2003); hep-ph/0207010.

  47. H.-C. Cheng and I. Low, JHEP 09, 051 (2003); hep-ph/0308199.

    Article  ADS  Google Scholar 

  48. L. B. Okun, Physics of Elementary Particles (Nauka, Moscow, 1984).

    Google Scholar 

  49. C.-N. Yang and R. L. Mills, Phys. Rev. 96, 191–195 (1954).

    Article  MathSciNet  ADS  Google Scholar 

  50. R. E. Behrends, R. J. Finkelstein, and A. Sirlin, Phys. Rev. 101, 866–873 (1956).

    Article  ADS  MATH  Google Scholar 

  51. T. Kinoshita and A. Sirlin, Phys. Rev. 113, 1652–1660 (1959).

    Article  ADS  Google Scholar 

  52. T. van Ritbergen and R. G. Stuart, Phys. Rev. Lett. 82, 488–491 (1999); hep-ph/9808283.

    Article  ADS  Google Scholar 

  53. S. Dawson, hep-ph/0303191.

  54. J. H. Kuhn, hep-ph/9707321.

  55. N. Gray, D. J. Broadhurst, W. Grafe, and K. Schilcher, Z. Phys. C 48, 673–680 (1990).

    Article  ADS  Google Scholar 

  56. K. Melnikov and T. van Ritbergen, Phys. Lett. B 482, 99–108 (2000); hep-ph/9912391.

    Article  ADS  Google Scholar 

  57. K. G. Chetyrkin and M. Steinhauser, Phys. Rev. Lett. 83, 4001–4004 (1999); hep-ph/9907509.

    Article  ADS  Google Scholar 

  58. K. G. Chetyrkin and M. Steinhauser, Nucl. Phys. B 573, 617–651 (2000); hep-ph/9911434.

    Article  ADS  Google Scholar 

  59. S. G. Gorishnii, A. L. Kataev, S. A. Larin, and L. R. Surguladze, Phys. Rev. D 43, 1633–1640 (1991).

    Article  ADS  Google Scholar 

  60. S. G. Gorishnii, A. L. Kataev, S. A. Larin, and L. R. Surguladze, Mod. Phys. Lett. A 5, 2703–2712 (1990).

    Article  ADS  Google Scholar 

  61. K. G. Chetyrkin, Phys. Lett. B 404, 161–165 (1997); hep-ph/9703278.

    Article  ADS  Google Scholar 

  62. J. A. M. Vermaseren, S. A. Larin, and T. van Ritbergen, Phys. Lett. B 405, 327–333 (1997); hep-ph/9703284.

    Article  ADS  Google Scholar 

  63. K. G. Chetyrkin, J. H. Kuhn, and M. Steinhauser, Comput. Phys. Commun. 133, 43–65 (2000); hep-ph/0004189.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Bednyakov.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bednyakov, V.A., Giokaris, N.D. & Bednyakov, A.V. On the Higgs mass generation mechanism in the Standard Model. Phys. Part. Nuclei 39, 13–36 (2008). https://doi.org/10.1134/S1063779608010024

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779608010024

PACS numbers

Navigation