Skip to main content
Log in

Nuclear multifragmentation and phase transitions in hot nuclei

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Nuclear multifragmentation is a new, multibody, decay mode of very hot nuclei. The key properties of this process that were measured are considered, such as the space-time and temperature characteristics. The experimental data for the critical temperature of the nuclear liquid-gas-phase transition are analyzed. Thermal multifragmentation is interpreted as a result of spinodal decomposition, which is actually the specific nuclear liquid-fog-phase transition of the first order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. I. Gurevich et al., Dok. Akad. Nauk SSSR 18, 169 (1938).

    Google Scholar 

  2. E. Schopper, Naturwissenschaftler 5, 557 (1937).

    Google Scholar 

  3. O. V. Lozhkin and N. A. Perfilov, Zh. Eksp. Teor. Fiz. 31, 913 (1956) [Sov. Phys. JETP 4, 790 (1956)].

    Google Scholar 

  4. N. A. Perfilov, O. V. Lozkin, and V. P. Shamov, Usp. Fiz. Nauk 38, 345 (1960) [Sov. Phys. Usp. 3, 1 (1960)].

    Google Scholar 

  5. B. Jakobsson et al., Z. Phys. A 307, 293 (1982).

    Google Scholar 

  6. P. J. Siemens, Nature 305, 410 (1983).

    Article  Google Scholar 

  7. J. E. Finn et al., Phys. Rev. Lett. 49, 1321 (1982).

    Article  ADS  Google Scholar 

  8. A. S. Hirsh et al., Phys. Rev 29, 508 (1984).

    ADS  Google Scholar 

  9. V. V. Avdeichikov et al., Yad. Fiz. 48, 1736 (1988) [Sov. J. Nucl. Phys. 48, 1043 (1988)].

    Google Scholar 

  10. J. Murata, PhD Thesis (KEK, 1999).

  11. J. Desbois et al., Z. Phys. A 328, 101 (1987).

    Google Scholar 

  12. S. P. Avdeyev et al., Eur. J. Phys. A 3, 75 (1998).

    ADS  Google Scholar 

  13. L. De Paula et al., Phys. Lett. B. 258, 251 (1991).

    ADS  Google Scholar 

  14. J. Hüfner, Phys. Rep. 125, 129 (1985).

    Article  ADS  Google Scholar 

  15. W. G. Lynch, Annu. Rev. Nucl. Part. Sci. 37, 493 (1987).

    Article  ADS  Google Scholar 

  16. L. G. Moretto and G. J. Wozniak, Annu. Rev. Nucl. Part. Sci. 44, 379 (1993); L. G. Moretto et al., Phys. Rep. 287, 249 (1997).

    ADS  Google Scholar 

  17. D. Guerreau, Nucl. Phys. A 574, 111 (1994).

    ADS  Google Scholar 

  18. J. Qugnon, Yad. Fiz. 57, 1705 (1994) [Phys. At. Nucl. 57, 1635 (1994)].

    Google Scholar 

  19. J. Bondorf et al., Phys. Rep. 257, 133 (1995).

    Article  ADS  Google Scholar 

  20. D. H. E. Gross, Phys. Rep. 279, 119 (1997).

    Article  ADS  Google Scholar 

  21. B. Tamain and D. Durand, in Session LXVI, Les Houches, (Elsevier, Amsterdam, 1998), p. 295.

    Google Scholar 

  22. A. Bonasera, M. Bruno, C. O. Dorso, and P. F. Mastinu, Riv. Nuovo Cimento 23, 1 (2000).

    Google Scholar 

  23. J. Richert and P. Wagner, Phys. Rep. 350, 1 (2001).

    Article  ADS  Google Scholar 

  24. B. Borderie, J. Phys. G: Nucl. Part. Phys. 28, R217 (2002).

    Article  ADS  Google Scholar 

  25. P. Chomaz, M. Colonna, and J. Randrup, Phys. Rep. 389, 263 (2004).

    Article  ADS  Google Scholar 

  26. P. Napolitani et al., Phys. Rev. C 70, 054607 (2004).

  27. V. A. Karnaukhov et al., Yad. Fiz. 62, 272 (1999) [Phys. At. Nucl. 62, 237 (1999)].

    Google Scholar 

  28. S. P. Avdeyev et al., Phys. At. Nucl. 64, 1549 (2001); Phys. Lett. B 503, 256 (2001).

    Article  Google Scholar 

  29. S. P. Avdeyev et al., Nucl. Phys. A 709, 392 (2002).

    ADS  Google Scholar 

  30. S. P. Avdeyev et al., Nucl. Instrum. Meth. A 332, 149 (1993).

    Article  ADS  Google Scholar 

  31. S. P. Avdeyev et al., Prib. Tekh. Eksp. 39, 7 (1996) [Instrum. Exp. Tech. 39, 153 (1996)].

    Google Scholar 

  32. V. D. Toneev et al., Nucl. Phys. A 519, 463 (1990).

    ADS  Google Scholar 

  33. N. S. Amelin et al., Yad. Fiz. 52, 272 (1990) [Sov. J. Nucl. Phys. 52, 237 (1990)].

    Google Scholar 

  34. J. P. Bondorf et al., Nucl. Phys. A 443, 321 (1985); Nucl. Phys. A 444, 460 (1985).

    ADS  Google Scholar 

  35. A. S. Botvina et al., Yad. Fiz. 42, 1127 (1985) [Sov. J. Nucl. Phys. 42, 712 (1985)].

    Google Scholar 

  36. D. H. E. Gross, Rep. Prog. Phys. 53, 605 (1990).

    Article  ADS  Google Scholar 

  37. J. Konopka et al., Phys. Rev. C 50, 2085 (1994).

    Article  ADS  Google Scholar 

  38. J. Randrup, Comput. Phys. Commun. 77, 153 (1993).

    ADS  Google Scholar 

  39. J. Toke, Lu. Jun, and W. U. Schröder, Phys. Rev. C 67, 034609 (2003); J. Toke, Lu. Jun, and W. U. Schröder, Phys. Rev. C 67, 044307 (2003).

  40. L. G. Sobotka, R. J. Charity, J. Toke, and W. U. Schröder, Phys. Rev. Lett. 93, 132702 (2004).

    Google Scholar 

  41. W. A. Friedman, Phys. Rev. C 42, 667 (1990).

    Article  ADS  Google Scholar 

  42. S. P. Avdeyev et al., JINR Rapid Commun. 82, 71 (1997).

    Google Scholar 

  43. E. R. Foxford et al., Phys. Rev. C 54, 749 (1996); K. B. Moreley, et al., Phys. Rev. C 54, 737 (1996).

    ADS  Google Scholar 

  44. A. Schüttauf et al., Nucl. Phys. A 607, 457 (1996).

    ADS  Google Scholar 

  45. W. C. Hsi et al., Phys. Rev. Lett. 73, 3367 (1994); G. J. Kunde et al., Phys. Rev. Lett. 74, 38 (1995).

    Article  ADS  Google Scholar 

  46. R. Trockel et al., Phys. Rev. C 39, 729 (1989).

    Article  ADS  Google Scholar 

  47. R. T. de Souza et al., Phys. Lett. B 268, 6 (1991).

    ADS  Google Scholar 

  48. D. R. Bowmann et al., Phys. Rev. C 46, 1834 (1992).

    ADS  Google Scholar 

  49. B. V. Jacak, Nucl. Phys. A 488, 325 (1988).

    ADS  Google Scholar 

  50. A. Baden et al., Nucl. Instrum. Methods Phys. Res. A 203, 189 (1982).

    Article  Google Scholar 

  51. W. Reisdorf et al., Nucl. Phys. A 612, 493 (1997).

    ADS  Google Scholar 

  52. S. Yu. Shmakov et al., Phys. At. Nucl 58, 1635 (1995).

    Google Scholar 

  53. R. T. de Souza et al., Phys. Lett. B 300, 29 (1993).

    ADS  Google Scholar 

  54. S. C. Jeong et al., Phys. Rev. Lett. 72, 3468 (1994).

    Article  ADS  Google Scholar 

  55. V. Lips et al., Phys. Lett. A 338, 141 (1994).

    Google Scholar 

  56. C. Ogilve et al., Phys. Rev. Lett. 67, 1214 (1991).

    ADS  Google Scholar 

  57. ALADIN Collab., GSI Report No. 02-89 (1989).

  58. U. Milkau et al., Phys. Rev. C 44, R1242 (1991).

    Article  ADS  Google Scholar 

  59. U. Milkau et al., Z. Phys. A 346, 277 (1993).

    Article  Google Scholar 

  60. T. Lefort et al., Phys. Rev. C 64, 064603 (2001).

  61. X. Campi, Nucl. Phys. A 495, 259 (1989).

    ADS  Google Scholar 

  62. A. L. Goodman, J. I. Kapusta, and A. Z. Mekjian, Phys. Rev. C 30, 851 (1984).

    Article  ADS  Google Scholar 

  63. E. Vient et al., Nucl. Phys. A 700, 535 (2002).

    ADS  Google Scholar 

  64. M. D’Agostino et al., Nucl. Phys. A 650, 329 (1999).

    ADS  Google Scholar 

  65. M. D’Agostino et al., Nucl. Phys. A 699, 795 (2002).

    ADS  Google Scholar 

  66. L. Beaulieu et al., Phys. Lett. A 463, 159 (1999).

    Google Scholar 

  67. T. Lefort et al., Phys. Rev. C 62, 031604 (2000).

  68. J. Gosset et al., Phys. Rev. C 16, 629 (1977).

    Article  ADS  Google Scholar 

  69. O. Shapiro and D. H. E. Gross, Nucl. Phys. A 573, 143 (1994).

    ADS  Google Scholar 

  70. D. R. Bowman et al., Phys. Rev. C 52, 818 (1995).

    Article  ADS  Google Scholar 

  71. G. Wang et al., Phys. Rev. C 57, R2786 (1998).

    Article  ADS  Google Scholar 

  72. L. Beaulieu et al., Phys. Rev. Lett. 84, 5971 (2000).

    Article  ADS  Google Scholar 

  73. V. K. Rodionov et al., Nucl. Phys. A 700, 457 (2002).

    ADS  Google Scholar 

  74. D. Durand, Nucl. Phys. A 630, 52 (1998).

    ADS  Google Scholar 

  75. Bao-An Li et al., Phys. Lett. B 335, 1 (1994).

    ADS  MATH  Google Scholar 

  76. D. S. Bracken et al., Phys. Rev. C 69, 034612 (2004).

  77. V. A. Karnaukhov et al., Phys. Rev. C 70, 041601 (2004).

  78. V. A. Karnaukhov et al., Nucl. Phys. A 749, 65 (2005).

    ADS  Google Scholar 

  79. H. Oeschler et al., Part. Nucl. Lett. 99(2), 70 (2000).

    Google Scholar 

  80. J. B. Natowitz et al., Phys. Rev. C 66, 031601 (2002).

  81. J. A. Lopez and J. Randrup, Nucl. Phys. A 503, 183 (1989); 512, 345 (1990).

    ADS  Google Scholar 

  82. X. Campi et al., Phys. Rev. C 67, 044610 (2003).

  83. C. Dorso and J. Randrup, Phys. Lett. B 301, 328 (1993).

    ADS  Google Scholar 

  84. A. Srachan and C. Dorso, Phys. Rev. C 55, 775 (1997).

    ADS  Google Scholar 

  85. C. Dorso et al., Phys. Rev. C 69, 034610 (2004).

  86. W. Cassing, Z. Phys. A 327, 447 (1987).

    Google Scholar 

  87. B. Borderie, Preprint Orsay/IPNO-DRE-92-03.

  88. M. W. Curtin, H. Toki, and D. K. Scott, Phys. Lett. B 123, 289 (1983).

    ADS  Google Scholar 

  89. G. Wang et al., Phys. Rev. 53, 1811 (1996).

    ADS  MathSciNet  Google Scholar 

  90. W. Norenberg, G. Papp, and P. Rozmej, Eur. Phys. J. A 14, 43 (2002).

    ADS  Google Scholar 

  91. V. Baran et al., Nucl. Phys. A 703, 603 (2002).

    ADS  Google Scholar 

  92. F. Goldenbaum et al., Phys. Rev. C 82, 5012 (1999); A. S. Karamyan et al., Eur. Phys. J. A 17, 49 (2003).

    ADS  Google Scholar 

  93. T. Odeh et al., Phys. Rev. Lett. 84, 4557 (2000).

    Article  ADS  Google Scholar 

  94. D. Hilscher and H. Rosner, Ann. Phys. 17, 471 (1992).

    Google Scholar 

  95. U. Brosa et al., Phys. Rev. C 197, 162 (1990).

    Google Scholar 

  96. A. D. Panagiotou et al., Phys. Rev. C 31, 55 (1985).

    Article  ADS  Google Scholar 

  97. N. T. Porile et al., Phys. Rev. C 39, 1914 (1989).

    Article  ADS  Google Scholar 

  98. M. E. Fisher, Physics 3, 255 (1967).

    Google Scholar 

  99. J. Schmelzer, G. Roepke, and F. Ludwig, Phys. Rev. C 55, 1917 (1997).

    Article  ADS  Google Scholar 

  100. K. H. Tanaka et al., Nucl. Phys. A 583, 581 (1995); T. Murakami et al., in Proceedings of the 10th Conference on Nucl. Reac. Mech., Varenna, 2003, Univ. Degli Study di Milano, Suppl., No. 122, p. 541.

    ADS  Google Scholar 

  101. L. P. Remsberg and D. G. Perry, Phys. Rev. Lett. 35, 361 (1975).

    Article  ADS  Google Scholar 

  102. D. R. Fortney and N. T. Porile, Phys. Lett. B 76, 553 (1978).

    ADS  Google Scholar 

  103. J. Urbon et al., Phys. Rev. C 21, 1048 (1980).

    Article  ADS  Google Scholar 

  104. K. K. Gudima and V. D. Toneev, Phys. Lett. B 73, 293 (1978).

    ADS  Google Scholar 

  105. W.-C. Hsi et al., Phys. Rev. C 58, R13 (1998).

    Article  ADS  Google Scholar 

  106. H. Jaqaman, A. Z. Mekjian, and L. Zamick, Phys, Rev. C 27, 2782 (1983).

    Article  ADS  Google Scholar 

  107. C. Borcea et al., Nucl. Phys. A 415, 169 (1984).

    ADS  Google Scholar 

  108. P. J. Siemens, Nucl. Phys. A 428, 189 (1984).

    ADS  Google Scholar 

  109. G. Sauer, H. Chandra, and U. Mosel, Nucl. Phys. A 264, 221 (1976).

    ADS  Google Scholar 

  110. Zhang Feng Shou, Z. Phys. A 356, 163 (1996).

    Article  ADS  Google Scholar 

  111. S. Taras et al., Phys. Rev. C 69, 014602 (2004).

  112. J. B. Elliott et al., Phys. Rev. Lett. 88, 042701 (2002).

  113. J. B. Elliott et al., Phys. Rev. C 67, 024609 (2003).

  114. M. Kleine Berkenbusch et al., Phys. Rev. Lett. 88, 022701 (2002).

    Google Scholar 

  115. J. Natowitz et al., Phys. Rev. Lett. 89, 212701 (2002).

  116. V. A. Karnaukhov, Phys. At. Nucl 60, 1625 (1997).

    Google Scholar 

  117. P. T. Reuter and K. A. Bugaev, Phys. Lett. B 517, 233 (2001).

    ADS  Google Scholar 

  118. J. Pochodzalla et al., Phys. Rev. Lett. 75, 1040 (1995).

    Article  ADS  Google Scholar 

  119. R. W. Hasse and W. Stocker, Phys. Lett. B 44, 26 (1973).

    ADS  Google Scholar 

  120. A. S. Iljinov et al., Z. Phys. A 287, 37 (1978).

    Google Scholar 

  121. M. Pi et al., Phys. Rev. C 26, 773 (1982).

    Article  Google Scholar 

  122. J. Bartel and P. Quentin, Phys. Lett. B 152, 29 (1985).

    ADS  Google Scholar 

  123. M. Brack et al., Phys. Rep. 123, 275 (1985).

    Article  ADS  Google Scholar 

  124. F. Garcias et al., Z. Phys. A 336, 31 (1990).

    Google Scholar 

  125. J. Nix, Nucl. Phys. A 130, 241 (1968).

    Google Scholar 

  126. D. G. Ravenhall et al., Nucl. Phys. A 407, 571 (1983).

    ADS  Google Scholar 

  127. L. G. Moretto, in Proceedings of the 3rd Symposium on Phys. Chem. of Fission, Rochester, New York, 1973 (IAEA, Vienna, 1974), Vol. 1, p. 329.

    Google Scholar 

  128. A. Gilbert and A. G. W. Cameron, Can. J. Phys. 43, 1446 (1965).

    ADS  Google Scholar 

  129. L. G. Moretto et al., Phys. Lett. A 38, 471 (1972).

    ADS  Google Scholar 

  130. V. A. Karnaukhov et al., Phys. Rev. C 67, 011601(R) (2003).

  131. V. A. Karnaukhov et al., Nucl. Phys. A 734, 520 (2004).

    ADS  Google Scholar 

  132. R. Ogul and A. S. Botvina, Phys. Rev. C 66, 051601 (2002).

    Google Scholar 

  133. A. Guarnera, in XXXIII Winter Meeting on Nuclear Physics, Bormio, 1995; Preprint GANIL P95-01 (Caen, 1995).

  134. S. J. Lee and A. Z. Mekjian, Phys. Rev. C 56, 2621 (1997).

    ADS  Google Scholar 

  135. V. Baran et al., Nucl. Phys. A 632, 287 (1998).

    ADS  Google Scholar 

  136. M. D’Agostino et al., Phys. Lett. B 473, 219 (2000).

    ADS  Google Scholar 

  137. E. Norbeck et al., Nucl. Phys. A 607, 105 (1996).

    ADS  Google Scholar 

  138. L. Beaulieu et al., Phys. Rev. C 65, 064604 (2001).

  139. J. Natowitz et al., Phys. Rev. C 65, 034618 (2002).

  140. L. G. Moretto et al., Phys. Rev. C 66, 041601(R) (2002).

  141. M. F. Rivet et al., Nucl. Phys. A 749, 73 (2005).

    ADS  Google Scholar 

  142. Ph. Chomaz and F. Gulminelli, Nucl. Phys. A 749, 3 (2005).

    ADS  Google Scholar 

  143. M. Pichon et al., Nucl. Phys. A 749, 93 (2005).

    Google Scholar 

  144. D. H. E. Gross, Nucl. Phys. A 553, 175 (1993).

    ADS  Google Scholar 

  145. H. R. Jaqaman and D. H. E. Gross, Nucl. Phys. A 524, 321 (1991).

    ADS  Google Scholar 

  146. K. A. Bugaev et al., Phys. Rev. C 62, 044320 (2000).

  147. W. Greiner and H. Stöcker, Pour la Science, Mars (1985).

  148. A. B. Migdal, Zh. Eksp. Teor. Fiz. 61, 2209 (1971) [Sov. Phys. JETP 34, 1184 (1971)]; Rev. Mod. Phys. 50, 107 (1978).

    Google Scholar 

  149. W. Weise and G. Brown, Phys. Lett. B 58, 300 (1975).

    ADS  Google Scholar 

  150. T. T. Lee, Rev. Mod. Phys. 47, 267 (1975).

    Article  ADS  Google Scholar 

  151. S. P. Avdeyev et al., Nucl. Phys. A 381, 419 (1982).

    ADS  Google Scholar 

  152. S. Nagamia, Nucl. Phys. A 488, 3 (1988).

    ADS  Google Scholar 

  153. L. Ricatti, Nucl. Phys. A 734, 28 (2004).

    ADS  Google Scholar 

  154. A. S. Botvina and I. N. Mishustin, Phys. Lett. B 584, 233 (2004).

    ADS  Google Scholar 

  155. J. Margueron et al., Phys. Rev. C 70, 028801 (2004).

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karnaukhov, V.A. Nuclear multifragmentation and phase transitions in hot nuclei. Phys. Part. Nuclei 37, 165–193 (2006). https://doi.org/10.1134/S1063779606020018

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779606020018

PACS numbers

Navigation