Skip to main content
Log in

Self-Consistent RPA Calculations for the Excitation to the Negative Parity States in Closed-Shell Nuclei

  • NUCLEI/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

In the present research, some static and dynamic nuclear properties of the closed-shell nuclei; \({}^{16}\)O, \({}^{34}\)Si, \({}^{40}\)Ca, and \({}^{48}\)Ca nuclei, have been studied using the self-consistent random phase approximation and applied with different Skyrme parameterizations, namely; SyO\({-}\), SyO\({+}\), BSk17, Sk255, SLy4 and SLy5. In particular, investigations of static properties are carried out, such as various nuclear densities with associated root-mean-square radii, neutron skin thicknesses, the binding energy per nucleon, and the single-particle radial nuclear density distributions. All the obtained results agreed well with the relevant experimental data. Concerning the dynamic properties, the excitation energy, transition density, and giant resonance modes for the excitation to the low-lying negative parity excited states 1\({}^{-}\), 3\({}^{-}\), 5\({}^{-}\), and 7\({}^{-}\) have also been studied. The present work shows that the Skyrme–Hartree–Fock (SHF) method with RPA successfully describes the ground states of closed-shell nuclei and their excitations to the negative parity states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

REFERENCES

  1. W. Greiner and J. A. Maruhn, Nuclear Models (Springer, 1996).

    Book  MATH  Google Scholar 

  2. A. S. Schneider, L. F. Roberts, C. D. Ott, and E. O’Connor, Phys. Rev. C 100, 55802 (2019).

    Article  ADS  Google Scholar 

  3. A. W. Steiner, J. M. Lattimer, and E. F. Brown, Astrophys. J. Lett. 765, L5 (2013).

    Article  ADS  Google Scholar 

  4. J. Kvasil, Nuclear Structure and Nuclear Processes (Prague, 2013).

    Google Scholar 

  5. A. A. Alzubadi, A. J. Alhaideri, and N. F. Lattoofi, Phys. Scr. 96, 55304 (2021).

    Article  ADS  Google Scholar 

  6. S. S. M. Wong, Introductory Nuclear Physics (Wiley, New York, 2008).

    Google Scholar 

  7. C. Robin, Ph. D. Thesis (Univ. Paris Sud, Paris XI, 2014).

  8. B. Povh, K. Rith, C. Scholz, and F. Zetsche, in Introduction to Physical Concepts (Springer, Berlin, 1995).

    MATH  Google Scholar 

  9. J. Suhonen, From Nucleons to Nucleus: Concepts of Microscopic Nuclear Theory (Springer Science, New York, 2007).

    Book  MATH  Google Scholar 

  10. B. A. Brown, S. E. Massen, and P. E. Hodgson, J. Phys. G: Nucl. Phys. 5, 1655 (1979).

    Article  ADS  Google Scholar 

  11. T. H. R. Skyrme, Nucl. Phys. 9, 615 (1958).

    Article  Google Scholar 

  12. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer, Nucl. Phys. A 635, 231 (1998).

    Article  ADS  Google Scholar 

  13. J. C. Slater, Phys. Rev. 81, 385 (1951).

    Article  ADS  Google Scholar 

  14. J. Bartel and K. Bencheikh, Eur. Phys. J. A 14, 179 (2002).

    Article  ADS  Google Scholar 

  15. D. J. Rowe, Nuclear Collective Motion: Models and Theory (Methuen, London, 1970), Vol. 211.

    MATH  Google Scholar 

  16. H. Nakada, J. Phys.: Conf. Ser. 445, 12011 (2013).

    Google Scholar 

  17. R. A. Radhi, A. A. Alzubadi, and A. H. Ali, Calculations of the Quadrupole Moments for Some Nitrogen Isotopes in p and psd Shell Model Spaces Using Different Effective Charges (2017).

  18. P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer Science, New York, 2004).

    Google Scholar 

  19. D. R. de Oliveira, Rev. Bras. FTs. 1, 403 (1971).

    Google Scholar 

  20. A. H. Taqi and G. L. Alawi, Nucl. Phys. A 983, 103 (2019).

    Article  ADS  Google Scholar 

  21. B. A. Brown, Lecture Notes in Nuclear Structure Physics (Natl. Super Conduct. Cyclotr. Lab., 2005), Vol. 11.

    Google Scholar 

  22. I. Angeli and K. P. Marinova, At. Data Nucl. Data Tables 99, 69 (2013).

    Article  ADS  Google Scholar 

  23. Data Center for Photonuclear Experiments. http://cdfe.sinp.msu.ru/services/.

  24. H. de Vries, C. W. de Jager, and C. de Vries, At. Data Nucl. Data Tables 36, 495 (1987).

    Article  ADS  Google Scholar 

  25. S. Goriely, S. Hilaire, M. Girod, and S. Péru, Phys. Rev. Lett. 102, 242501 (2009).

    Article  ADS  Google Scholar 

  26. B. K. Agrawal, S. Shlomo, and V. K. Au, Phys. Rev. C 68, 31304 (2003).

    Article  ADS  Google Scholar 

  27. P.-G. Reinhard, D. J. Dean, W. Nazarewicz, J. Dobaczewski, J. A. Maruhn, and M. R. Strayer, Phys. Rev. C 60, 14316 (1999).

    Article  ADS  Google Scholar 

  28. Nuclear Data Services. https://www-nds.iaea.org/.

  29. T. N. Buti, J. Kelly, W. Bertozzi, J. M. Finn, F. W. Hersman, C. Hyde-Wright, M. V. Hynes, M. A. Kovash, S. Kowalski, R. W. Lourie, B. Murdock, B. E. Norum, B. Pugh, C. P. Sargent, W. Turchinetz, and B. L. Berman, Phys. Rev. C 33, 755 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noor M. Kareem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kareem, N.M., Alzubadi, A.A. Self-Consistent RPA Calculations for the Excitation to the Negative Parity States in Closed-Shell Nuclei. Phys. Atom. Nuclei 85, 625–640 (2022). https://doi.org/10.1134/S1063778823010234

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778823010234

Navigation