Skip to main content
Log in

Analysis of 12C + 12C Elastic Scattering for Energy between 70 and 1440 MeV

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

In the present work, we reanalysis the 12C + 12C refractive scattering over a wide energy range. The analysis is performed in the framework of optical model with the solution of the non-relativistic Schrödinger equation. For the real part of the optical model potential, we used real folded potentials based on JLM effective nucleon-nucleon (NN) interaction. For the imaginary part we used the familiar and conventional Woods-Saxon (WS) form with three adjusted parameters. Different local density approximations (LDA) are used for JLM effective NN interaction. Our main purpose is to find a systematic optical model potential over a wide energy range between 70.7 and 1440 MeV. The real JLM folded potentials with a shallow WS imaginary potentials successfully and systematically reproduced the general feature of the refractive elastic scattering of 12C + 12C. The energy dependence of the real (JR) and imaginary (JI) volume integrals and reaction cross sections σR is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. R. Satchler and W. G. Love, Phys. Rep. 55, 183 (1979). http://www.sciencedirect.com/science/article/pii/0370157379900814.

    Article  ADS  Google Scholar 

  2. H. Feshbach, Ann. Phys. (N. Y.) 19, 287 (1962). http://www.sciencedirect.com/science/article/pii/000349166290221X.

    Article  ADS  MathSciNet  Google Scholar 

  3. Dao T. Khoa, W. von Oertzen, H. G. Bohlen, and S. Ohkubo, J. Phys. G 34, R111 (2007). https://doi.org/10.1088%2F0954-3899%2F34%2F3%2Fr01.

    Article  Google Scholar 

  4. A. M. Kobos, B. A. Brown, P. E. Hodgson, G. R. Satchler, and A. Budzanowski, Nucl. Phys. A 384, 65 (1982). http://www.sciencedirect.com/science/article/pii/0375947482903050.

    Article  ADS  Google Scholar 

  5. T. Furumoto, Y. Sakuragi, and Y. Yamamoto, Phys. Rev. C 80, 044614 (2009). https://doi.org/10.1103/PhysRevC.80.044614.

    Article  ADS  Google Scholar 

  6. T. Furumoto, Y. Sakuragi, and Y. Yamamoto, Phys. Rev. C 78, 044610 (2008). https://doi.org/10.1103/PhysRevC.78.044610.

    Article  ADS  Google Scholar 

  7. M. El-Azab Farid and G. R. Satchler, Nucl. Phys. A 441, 157 (1985). http://www.sciencedirect.com/-science/article/pii/0375947485901733.

    Article  ADS  Google Scholar 

  8. M. El-Azab Farid and G. R. Satchler, Nucl. Phys. A 438, 525 (1985). http://www.sciencedirect.com/-science/article/pii/0375947485903914.

    Article  ADS  Google Scholar 

  9. Dao T. Khoa, G. R. Satchler, and W. von Oertzen, Phys. Rev. C 56, 954 (1997). https://doi.org/10.1103/PhysRevC.56.954.

    Article  ADS  Google Scholar 

  10. R. G. Stokstad, R. M. Wieland, G. R. Satchler, C. B. Fulmer, D. C. Hensley, S. Raman, L. D. Rickertsen, A. H. Snell, and P. H. Stelson, Phys. Rev. C 20, 655 (1979). https://doi.org/10.1103/PhysRevC.20.655.

    Article  ADS  Google Scholar 

  11. M. E. Brandan, M. Rodrguez-Villafuerte, and A. Ayala, Phys. Rev. C 41, 1520 (1990). https://doi.org/10.1103/PhysRevC.41.1520.

    Article  ADS  Google Scholar 

  12. K. W. McVoy and M. E. Brandan, Nucl. Phys. A 542, 295 (1992). http://www.sciencedirect.com/science/article/pii/0375947492902189.

    Article  ADS  Google Scholar 

  13. M. E. Brandan and G. R. Satchler, Phys. Rep. 285, 143 (1997). http://www.sciencedirect.com/science/article/pii/S0370157396000488.

    Article  ADS  Google Scholar 

  14. M. El-Azab Farid, Z. M. M. Mahmoud, and G. S. Hassan, Nucl. Phys. A 691, 671 (2001). http://www.sciencedirect.com/science/-article/pii/S0375947401005875.

    Article  ADS  Google Scholar 

  15. R. C. Fuller, Phys. Rev. C 12, 1561 (1975). https://doi.org/10.1103/PhysRevC.12.1561.

    Article  ADS  Google Scholar 

  16. F. Michel, J. Albinski, P. Belery, Th. Delbar, Gh. Gregoire, B. Tasiaux, and G. Reidemeister, Phys. Rev. C 28, 1904 (1983). https://doi.org/10.1103/PhysRevC.28.1904.

    Article  ADS  Google Scholar 

  17. D. M. Brink and N. Takigawa, Nucl. Phys. A 279, 159 (1977). http://www.sciencedirect.com/science/article/pii/0375947477904274.

    Article  ADS  Google Scholar 

  18. N. Rowley, H. Doubre, and C. Marty, Phys. Lett. B 69, 147 (1977). http://www.sciencedirect.com/science/article/pii/037026937790630X.

    Article  ADS  Google Scholar 

  19. M. E. Brandan and G. R. Satchler, Nucl. Phys. A 487, 477 (1988). http://www.sciencedirect.com/science/article/pii/0375947488906252.

    Article  ADS  Google Scholar 

  20. J. Y. Hostachy, M. Buenerd, J. Chauvin, D. Lebrun, Ph. Martin, J. C. Lugol, L. Papineau, P. Roussel, N. Alamanos, J. Arvieux, and C. Cerruti, Nucl. Phys. A 490, 441 (1988). http://www.sciencedirect.com/science/article/pii/0375947488905143.

    Article  ADS  Google Scholar 

  21. Dao T. Khoa, Nguyen Hoang Phuc, Doan Thi Loan, and Bui Minh Loc, Phys. Rev. C 94, 034612 (2016). https://doi.org/10.1103/PhysRevC.94.-034612.

    Article  ADS  Google Scholar 

  22. J.-P. Jeukenne, A. Lejeune, and C. Mahaux, Phys. Rev. C 16, 80 (1977). https://doi.org/10.1103/PhysRevC.16.80.

    Article  ADS  Google Scholar 

  23. Zakaria M. M. Mahmoud, Kassem O. Behairy, Awad A. Ibraheem, Sherif R. Mokhtar, M. A. Hassanain, and M. El-Azab Farid, J. Phys. Soc. Jpn. 88, 024201 (2019). https://doi.org/10.7566/JPSJ.88.024201

    Article  ADS  Google Scholar 

  24. T. Furumoto and Y. Sakuragi, Phys. Rev. C 74, 034606 (2006). https://doi.org/10.1103/-PhysRevC.74.034606.

    Article  ADS  Google Scholar 

  25. Dao T. Khoa, Phys. Rev. C 63, 034007 (2001). https://doi.org/10.1103/PhysRevC.63.034007

    Article  ADS  Google Scholar 

  26. Kassem O. Behairy, Zakaria M. M. Mahmoud, and M. Anwar, Nucl. Phys. A 957, 332 (2017). http://www.sciencedirect.com/science/article/pii/-S037594741630241X.

    Article  ADS  Google Scholar 

  27. N. M. Clarke, Hi-optim 94.2 code (Univ. of Birmingham, England, 1994), private communication.

    Google Scholar 

  28. S. Kubono, M. H. Tanaka, M. Sugitani, K. Morita, H. Utsunomiya, M.-K. Tanaka, S. Shimoura, E. Takada, M. Fukada, and K. Takimoto, Phys. Rev. C 31, 2082 (1985). https://doi.org/10.1103/PhysRevC.31.2082.

    Article  ADS  Google Scholar 

  29. H. G. Bohlen, X. S. Chen, J. G. Cramer, P. Frbrich, B. Gebauer, H. Lettau, A. Miczaika, W. von Oertzen, R. Ulrich, and T. Wilpert, Z. Phys. A 322, 241 (1985). https://doi.org/10.1007/BF01411889.

    Article  ADS  Google Scholar 

  30. A. S. Demyanova, H. G. Bohlen, A. N. Danilov, S. A. Goncharov, S. V. Khlebnikov, V. A. Maslov, Yu. E. Penionzkevich, Yu. G. Sobolev, W. Trzaska, G. P. Tyurin, and A. A. Ogloblin, Nucl. Phys. A 834, 473c (2010). http://www.sciencedirect.com/science/article/pii/S0375947410000692.

    Article  ADS  Google Scholar 

  31. C. C. Sahm, T. Murakami, J. G. Cramer, A. J. Lazzarini, D. D. Leach, D. R. Tieger, R. A. Loveman, W. G. Lynch, M. B. Tsang, and J. Van der Plicht, Phys. Rev. C 34, 2165 (1986). https://doi.org/10.1103/PhysRevC.34.2165.

    Article  ADS  Google Scholar 

  32. M. Buenerd, A. Lounis, J. Chauvin, D. Lebrun, P. Martin, G. Duhamel, J. C. Gondrand, and P. De Saintignon, Nucl. Phys. A 424, 313 (1984). http://www.sciencedirect.com/science/article/pii/-0375947484901866.

    Article  ADS  Google Scholar 

  33. M. Buenerd, J. Pinston, J. Cole, C. Guet, D. Lebrun, J. M. Loiseaux, P. Martin, E. Monnand, J. Mougey, H. Nifenecker, R. Ost, P. Perrin, Ch. Ristori, P. de Saintignon, F. Schussler, L. Carln, et al., Phys. Lett. B 102, 242 (1981). http://www.sciencedirect.com/science/article/pii/-0370269381908674.

    Article  ADS  Google Scholar 

  34. W. W. Qu, G. L. Zhang, S. Terashima, T. Furumoto, Y. Ayyad, Z. Q. Chen, C. L. Guo, A. Inoue, X. Y. Le, H. J. Ong, D. Y. Pang, H. Sakaguchi, Y. Sakuragi, B. H. Sun, A. Tamii, I. Tanihata, et al., Phys. Lett. B 751, 1 (2015). http://www.sciencedirect.com/science/article/pii/-S0370269315007595.

    Article  ADS  Google Scholar 

  35. Ajay Mehndiratta and Prashant Shukla, Nucl. Phys. A 961, 22 (2017). http://www.sciencedirect.com/science/article/pii/S0375947417300271.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through General Research Project under grant number (49/1440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zakaria M. M. Mahmoud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, Z.M.M., Hassanien, M.A. Analysis of 12C + 12C Elastic Scattering for Energy between 70 and 1440 MeV. Phys. Atom. Nuclei 82, 599–614 (2019). https://doi.org/10.1134/S1063778819060103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778819060103

Navigation