Skip to main content
Log in

Sequential character of low-energy ternary and quaternary nuclear fission

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

An analysis of low-energy true ternary (quaternary) nuclear fission leads to the conclusion that these fission modes have a sequential two-step (three-step) character such that the emission of a third particle (third and fourth particles) and the separation of fission fragments occur at distinctly different instants, in contrast to the simultaneous emergence of all fission products in the case of onestep ternary (quaternary) fission. This conclusion relies on the following arguments. First, the emission of a third particle (third and fourth particles) from a fissile nucleus is due to a nonevaporative mechanism associated with a nonadiabatic character of the collective deformation motion of this nucleus at the stages preceding its scission. Second, the axial symmetry of the deformed fissile compound nucleus and the direction of its symmetry axis both remain unchanged at all stages of ternary (quaternary) fission. This circumstancemakes it possible to explain themechanism of the appearance of observed anisotropies and T — odd asymmeries in the angular distributions of products of ternary (quaternary) nuclear fission. Third, the T —odd asymmetry discovered experimentally in ternary nuclear fission induced by cold polarized neutrons obeys the T —invariance condition only in the case of a sequential two-step (three-step) character of true ternary (quaternary) nuclear fission. At the same time, this asymmetry is not a T —invariant quantity in the case of the simultaneous emission of products of true ternary (quaternary) nuclear fission from the fissile compound nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Halperm, in Proceedings of the Symposium on Physics and Chemistry of Fission (IAEA, Vienna, 1964), p.369.

    Google Scholar 

  2. A. L. Barabanov, Symmetries and Spin–Angular Correlations in Reactions and Decays (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  3. N. Carjan, J. Phys. (Paris) 37, 1279 (1976).

    Article  Google Scholar 

  4. O. Tanimura and T. Fliessbach, Z. Phys. A 328, 475 (1987).

    ADS  Google Scholar 

  5. S. G. Kadmensky, Phys. At. Nucl. 66, 1691 (2003).

    Article  Google Scholar 

  6. S. G. Kadmensky, Phys. At. Nucl. 67, 170, 241 (2004).

    Article  Google Scholar 

  7. S. G. Kadmensky, Phys. At. Nucl. 71, 1193 (2008).

    Article  Google Scholar 

  8. S. G. Kadmensky, V. E. Bunakov, and L. V. Titova, Phys. At. Nucl. 78, 662 (2015).

    Article  Google Scholar 

  9. M. Mutterer et al., in Proceedings of the 5th International Conference on Dynamical Aspects of Nuclear Fission, Častá-Papiernička, Slovak Republic, 2001 (World Sci., Singapore, 2002), p. 191.

    Google Scholar 

  10. P. Jesinger et al., Eur. Phys. J. A 24, 379 (2005).

    Article  ADS  Google Scholar 

  11. S. G. Kadmensky and L. V. Titova, Phys. At. Nucl. 76, 16 (2013).

    Article  Google Scholar 

  12. S. G. Kadmensky, L. V. Titova, and A. O. Bulychev, Phys. At. Nucl. 78, 672 (2015).

    Article  Google Scholar 

  13. A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin, New York, 1969, 1975), Vols. 1, 2.

    Google Scholar 

  14. J. R. Nix, Nucl. Phys. A 130, 241 (1969).

    Article  ADS  Google Scholar 

  15. M. Brack et al., Rev. Mod. Phys. 44, 320 (1972).

    Article  ADS  Google Scholar 

  16. P. Fong, Phys. Rev. C 3, 2025 (1971).

    Article  ADS  Google Scholar 

  17. V. A. Rubchenya and S. G. Yavshits, Sov. J. Nucl. Phys. 40, 416 (1984).

    Google Scholar 

  18. S. G. Kadmenskiĭ, V. P.Markushev, and V. I. Furman, Sov. J. Nucl. Phys. 35, 166 (1982).

    Google Scholar 

  19. S. G. Kadmenskiĭ, V. P.Markushev, Yu. P. Popov, and V. I. Furman, Sov. J. Nucl. Phys. 39, 4 (1984).

    Google Scholar 

  20. N. Mollenkopf et al., Phys. G. 18, 1203 (1992).

    Google Scholar 

  21. M. Mutterer and J. P. Theobald, Dinuclear Decay Modes (IOP, Bristol, 1996), Chap.12.

    Google Scholar 

  22. M. Ya. Barkovskii et al., Preprint No. 1540, LIYaF (Leningr. Inst. Nucl., Leningrad, 1989).

    Google Scholar 

  23. P. Jesinger, A. Kötzle, A. M. Gagarski, et al., Nucl. Instrum. Methods Phys. Res. A 440, 618 (2000).

    Article  ADS  Google Scholar 

  24. A. M. Gagarski, I. S. Guseva, F. Gonnenwein, et al., in Proceedings of the 14th International Seminar on Interaction of Neutrons with Nuclei ISINN-14, Dubna, Russia, May 24–27, 2006 (JINR, Dubna, 2007), p. 93.

    Google Scholar 

  25. V. E. Bunakov and S. G. Kadmensky, Phys. At. Nucl. 66, 1846 (2003).

    Article  Google Scholar 

  26. S. G. Kadmensky and P. V. Kostryukov, Izv. Akad. Nauk, Ser. Fiz. (in press).

  27. S. G. Kadmensky, Phys. At. Nucl. 65, 1785 (2002).

    Article  Google Scholar 

  28. S. G. Kadmensky and O. V. Smolyansky, Bull. Russ. Acad. Sci.: Phys. 71, 336 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Kadmensky.

Additional information

Original Russian Text © S.G. Kadmensky, A.O. Bulychev, 2016, published in Yadernaya Fizika, 2016, Vol. 79, No. 5, pp. 564–569.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadmensky, S.G., Bulychev, A.O. Sequential character of low-energy ternary and quaternary nuclear fission. Phys. Atom. Nuclei 79, 793–797 (2016). https://doi.org/10.1134/S1063778816050112

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778816050112

Navigation