Skip to main content
Log in

Equation of state of hadron resonance gas and the phase diagram of strongly interacting matter

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The equation of state of hadron resonance gas at finite temperature and baryon density is calculated taking into account finite-size effects within the excluded-volume model. Contributions of known hadrons with masses up to 2 GeV are included in the zero-width approximation. Special attention is paid to the role of strange hadrons in the system with zero total strangeness. A density-dependent mean field is added to guarantee that the nuclear matter has a saturation point and a liquid-gas phase transition. The deconfined phase is described by the bag model with lowest order perturbative corrections. The phasetransition boundaries are found by using the Gibbs conditions with the strangeness neutrality constraint. The sensitivity of the phase diagram to the hadronic excluded volume and to the parametrization of the mean-field is investigated. The possibility of strangeness-antistrangeness separation in the mixed phase is analyzed. It is demonstrated that the peaks in the K/π and Λ/π excitation functions observed at low SPS energies can be explained by a nonmonotonous behavior of the strangeness fugacity along the chemical freeze-out line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Karsch, E. Laermann, and A. Peikert, Nucl. Phys. B 605, 579 (2001).

    Article  ADS  Google Scholar 

  2. M. Gyulassy and L. McLerran, Nucl. Phys. A 750, 30 (2004).

    Article  ADS  Google Scholar 

  3. P. de Forcrand and O. Philipsen, J. High Energy Phys. 0701, 077 (2007).

    Article  Google Scholar 

  4. M. G. Alford, K. Rajagopal, and F. Wilczek, Phys. Lett. B 422, 247 (1998).

    Article  ADS  Google Scholar 

  5. O. Scavenius, A. Mocsy, I. N. Mishustin, and D. H. Rischke, Phys. Rev. C 64, 045202 (2001).

    Google Scholar 

  6. I. C. Arsene, L. V. Bravina, W. Cassing, et al., Phys. Rev. C 75, 034902 (2007).

  7. S. V. Afanasiev et al. (NA49 Collab.), Phys. Rev.C 66, 054902 (2002).

  8. C. Alt et al. (NA49 Collab.), Phys. Rev. C 77, 024903 (2008).

    Google Scholar 

  9. I. N. Mishustin, L. M. Satarov, H. Stöcker, and W. Greiner, Phys. Rev. C 66, 015202 (2002).

    Google Scholar 

  10. U. Heinz, P. R. Subramanian, H. Stöcker, and W. Greiner, J. Phys. G 12, 1237 (1986).

    Article  ADS  Google Scholar 

  11. J. D. Walecka, Ann. Phys. (N.Y.) 83, 491 (1974).

    Article  ADS  Google Scholar 

  12. B. D. Serot and J. D. Walecka, Int. J. Mod. Phys. E 6, 515 (1997).

    Article  ADS  Google Scholar 

  13. L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon, Oxford, 1980).

    Google Scholar 

  14. R. Hageddorn and J. Rafelski, Phys. Lett. B 97, 136 (1980).

    Article  ADS  Google Scholar 

  15. F. Karsch and H. Satz, Phys. Rev. D 21, 1168 (1980).

    Article  ADS  Google Scholar 

  16. J. I. Kapusta, Phys. Rev. D 23, 2444 (1981).

    Article  ADS  Google Scholar 

  17. D. H. Rischke, M. I. Gorenstein, H. Stöcker, and W. Greiner, Z. Phys. C 51, 485 (1991).

    Article  Google Scholar 

  18. R. Venugopalan and M. Prakash, Nucl. Phys. A 546, 718 (1992).

    Article  ADS  Google Scholar 

  19. G. D. Yen, M. I. Gorenstein, W. Greiner, and S. N. Yang, Phys. Rev. C 56, 2210 (1997).

    Article  ADS  Google Scholar 

  20. S. Kagiyama, S. Kumamoto, A. Minaka, et al., Eur. Phys. J. C 25, 453 (2002).

    Article  ADS  Google Scholar 

  21. S. Wheaton and J. Cleymans, hep-ph/0407174.

  22. V. D. Toneev, E. G. Nikonov, B. Friman, et al., Eur. Phys. J. C 32, 399 (2004).

    Article  ADS  Google Scholar 

  23. C. Greiner, P. Koch, and H. Stöcker, Phys. Rev. Lett. 58, 1825 (1987).

    Article  ADS  Google Scholar 

  24. M. I. Gorenstein, M. Gaździcki, and W. Greiner, Phys. Rev. C 72, 024909 (2005).

    Google Scholar 

  25. H. W. Barz, B. L. Friman, J. Knoll, and H. Schulz, Phys. Rev. D 40, 157 (1989).

    Article  ADS  Google Scholar 

  26. C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008).

    Article  ADS  Google Scholar 

  27. D. B. Kaplan and A. E. Nelson, Phys. Lett. B 175, 57 (1986).

    Article  ADS  Google Scholar 

  28. J. Schaffner, A. Gal, I. N. Mishustin, et al., Phys. Lett. B 334, 268 (1994).

    Article  ADS  Google Scholar 

  29. J. Schaffner, J. Bondorf, and I. N. Mishustin, Nucl. Phys. A 625, 325 (1997).

    Article  ADS  Google Scholar 

  30. I. Zakout, W. Greiner, and H. R. Jaqaman, Nucl. Phys. A 759, 201 (2005).

    Article  ADS  Google Scholar 

  31. J. Cleymans and H. Satz, Z. Phys. C 57, 135 (1993).

    Article  ADS  Google Scholar 

  32. P. Braun-Munzinger and J. Stachel, Nucl. Phys. A 606, 320 (1996).

    Article  ADS  Google Scholar 

  33. A. Andronic, P. Braun-Munzinger, and J. Stachel, Phys. Lett. B 673, 142 (2009).

    Article  ADS  Google Scholar 

  34. L. Ahle et al. (E866/E917 Collab.), Phys. Lett. B 476, 1 (2000).

    Article  ADS  Google Scholar 

  35. B. I. Abelev et al. (STAR Collab.), Phys. Rev. C 79, 034909 (2009).

  36. F. Becattini, M. Gaździcki, A. Keränen, et al., Phys. Rev. C 69, 024905 (2004).

  37. C. Pinkenburg et al. (E895 Collab.), Nucl. Phys. A 698, 495 (2002).

    Article  ADS  Google Scholar 

  38. S. Albergo et al. (E896 Collab.), Phys. Rev. Lett. 88, 062301 (2002).

  39. A. Andronic, P. Braun-Munzinger, and J. Stachel, Nucl. Phys. A 772, 167 (2006).

    Article  ADS  Google Scholar 

  40. Yu. B. Ivanov, A. S. Khvorostukhin, E. E. Kolomeitsev, et al., Phys. Rev. C 72, 025804 (2005).

    Google Scholar 

  41. L. M. Satarov, I. N. Mishustin, A. V. Merdeev, and H. Stöcker,Phys. Rev. C 75, 024903 (2007).

    Google Scholar 

  42. L. M. Satarov, I. N. Mishustin, A. V. Merdeev, and H. Stöcker, Yad. Fiz. 70, 1822 (2007) [Phys. At. Nucl. 70, 1797 (2007)].

    Google Scholar 

  43. D. Teaney, J. Lauret, and E. V. Shuryak, Phys. Rev. Lett. 86, 4783 (2001).

    Article  ADS  Google Scholar 

  44. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, Oxford, 1987).

    MATH  Google Scholar 

  45. I. N. Mishustin, L. M. Satarov, H. Stöcker, and W. Greiner, Yad. Fiz. 64, 866 (2001) [Phys. At. Nucl. 64, 802 (2001)].

    Google Scholar 

  46. J. Cleymans and K. Redlich, Phys. Rev. Lett. 81, 5284 (1998).

    Article  ADS  Google Scholar 

  47. K. Paech, M. Reiter, A. Dumitru, et al., Nucl. Phys. A 681, 41 (2001).

    Article  ADS  Google Scholar 

  48. W. Trautmann, Nucl. Phys. A 752, 407 (2005).

    Article  ADS  Google Scholar 

  49. T. H. R. Skyrme, Phil. Mag. 1, 1043 (1956); Nucl. Phys. 9, 615 (1959).

    Article  MATH  ADS  Google Scholar 

  50. G. Sauer, H. Chandra, and U. Mosel, Nucl. Phys. A 264, 221 (1976).

    Article  ADS  Google Scholar 

  51. J. P. Bondorf, A. S. Botvina, A. S. Iljinov, I. N. Mishustin, and K. Sneppen, Phys. Rep. 257, 133 (1995).

    Article  ADS  Google Scholar 

  52. J. Pochodzalla et al., Phys. Rev. Lett. 75, 1040 (1995).

    Article  ADS  Google Scholar 

  53. P. Chomaz, M. Colonna, and J. Randrup, Phys. Rep. 389, 263 (2004).

    Article  ADS  Google Scholar 

  54. I. N. Mishustin, Phys. Rev. Lett. 82, 4779 (1999).

    Article  ADS  Google Scholar 

  55. G. Torrieri, B. Tomasik, and I. N. Mishustin, Phys. Rev. C 77, 034903 (2008).

    Google Scholar 

  56. S. A. Chin and A. K. Kerman, Phys. Rev. Lett. 43, 1292 (1979).

    Article  ADS  Google Scholar 

  57. E. Farhi and R. L. Yaffe, Phys. Rev. D 30, 2379 (1984).

    Article  ADS  Google Scholar 

  58. J. Schaffner, C. Greiner, and H. Stöcker, Phys. Rev. C 46, 322 (1992).

    Article  ADS  Google Scholar 

  59. M. I. Gorenstein, A. P. Kostyuk, and Ya. D. Krivenko, J. Phys. G 25, L75 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Satarov.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satarov, L.M., Dmitriev, M.N. & Mishustin, I.N. Equation of state of hadron resonance gas and the phase diagram of strongly interacting matter. Phys. Atom. Nuclei 72, 1390–1415 (2009). https://doi.org/10.1134/S1063778809080146

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778809080146

PACS numbers

Navigation