Skip to main content
Log in

On multiplicity and transverse-momentum correlations in collisions of ultrarelativistic ions

  • Elementary Particles and Fields Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A theoretical description of long-range correlations between observables measured in separated rapidity intervals for nucleus-nucleus collisions at high energies is given. With allowance for an actual distribution of nucleons in nuclei, the p t n and nn correlation functions and respective correlation coefficients are calculated at various values of the impact parameter. It is shown that fluctuations of the impact parameter at a level of 1 fm, which are irremovable in experiments, affect the correlation coefficients substantially. It is shown that p t n correlations become much more pronounced upon going over from the SPS to the RHIC and LHC energies. The p t n and nn correlation functions calculated for the minimumbias case (that is, without selection in centrality) are compared with experimental data on PbPb collisions at the SPS energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B. Kaidalov, Phys. Lett. B 116, 459 (1982); A. B. Kaidalov and K. A. Ter-Martirosyan, Phys. Lett. B 117, 247 (1982).

    Article  ADS  Google Scholar 

  2. A. Capella, U. P. Sukhatme, C.-I. Tan, and J. Tran Thanh Van, Phys. Lett. B 81, 68 (1979); Phys. Rep. 236, 225 (1994).

    Article  ADS  Google Scholar 

  3. M. A. Braun and C. Pajares, Phys. Lett. B 287, 154 (1992); Nucl. Phys. B 390, 542, 549 (1993).

    Article  ADS  Google Scholar 

  4. N. S. Amelin, M. A. Braun, and C. Pajares, Phys. Lett. B 306, 312 (1993); Z. Phys. C 63, 507 (1994).

    Article  ADS  Google Scholar 

  5. N. S. Amelin, N. Armesto, M. A. Braun, et al., Phys. Rev. Lett. 73, 2813 (1994).

    Article  ADS  Google Scholar 

  6. D. Kharzeev and M. Nardi, Phys. Lett. B 507, 121 (2001); nucl-th/0012025.

    Article  ADS  Google Scholar 

  7. L. V. Gribov, E. M. Levin, and M. G. Ryskin, Phys. Rep. 100, 1 (1983).

    Article  ADS  Google Scholar 

  8. N. Armesto, M. A. Braun, E. G. Ferreiro, and C. Pajares, Phys. Rev. Lett. 77, 3736 (1996).

    Article  ADS  Google Scholar 

  9. M. A. Braun, C. Pajares, and J. Ranft, Int. J. Mod. Phys. A 14, 2689 (1999); hep-ph/9707363.

    Article  ADS  Google Scholar 

  10. M. Nardi and H. Satz, Phys. Lett. B 442, 14 (1998); H. Satz, Nucl. Phys. A 661, 104c (2000).

    Article  ADS  Google Scholar 

  11. M. A. Braun and C. Pajares, Eur. Phys. J. C 16, 349 (2000).

    Article  ADS  Google Scholar 

  12. A. Capella, A. B. Kaidalov, and J. Tran Thanh Van, Heavy Ion Phys. 9, 169 (1999); hep-ph/9903244.

    Google Scholar 

  13. M. A. Braun and C. Pajares, Phys. Rev. Lett. 85, 4864 (2000).

    Article  ADS  Google Scholar 

  14. M. A. Braun, F. del Moral, and C. Pajares, Phys. Rev. C 65, 024907 (2002).

    Google Scholar 

  15. N. Armesto, C. Pajares, and D. Sousa, Phys. Lett. B 527, 92 (2002).

    Article  ADS  Google Scholar 

  16. M. A. Braun, C. Pajares, and V. V. Vechernin, Phys. Lett. B 493, 54 (2000).

    Article  ADS  Google Scholar 

  17. V. V. Vechernin and R. S. Kolevatov, Vestn. Peterb. Univ., Ser. 4: Fiz., Khim., No. 2, 12 (2004); hep-ph/0304295.

  18. V. V. Vechernin and R. S. Kolevatov, Vestn. Peterb. Univ., Ser. 4: Fiz., Khim., No. 4, 11 (2004); hep-ph/0305136.

  19. M. A. Braun, R. S. Kolevatov, C. Pajares, and V. V. Vechernin, Eur. Phys. J. C 32, 535 (2004).

    Article  ADS  Google Scholar 

  20. J. Schwinger, Phys. Rev. 82, 664 (1951).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. T. S. Biro, H. B. Nielsen, and J. Knoll, Nucl. Phys. B 245, 449 (1984).

    Article  ADS  Google Scholar 

  22. A. Bialas and W. Czyz, Nucl. Phys. B 267, 242 (1986).

    Article  ADS  Google Scholar 

  23. M. A. Braun, F. del Moral, and C. Pajares, Eur. Phys. J. C 21, 557 (2001).

    Article  ADS  Google Scholar 

  24. S. Uhlig et al., Nucl. Phys. B 132, 15 (1978).

    Article  ADS  Google Scholar 

  25. UA5 Collab. (K. Alpgard et al.), Phys. Lett. B 123, 361 (1983).

    Article  Google Scholar 

  26. UA5 Collab. (R. E. Ansorge et al.), Z. Phys. C 37, 191 (1988).

    Article  Google Scholar 

  27. E735 Collab. (T. Alexopulos et al.), Phys. Lett. B 353, 155 (1995).

    Article  Google Scholar 

  28. A. Capella and A. Krzywicki, Phys. Rev. D 18, 4120 (1978); A. Capella and J. Tran Thanh Van, Z. Phys. C 18, 85 (1983); Phys. Rev. D 29, 2512 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  29. T. T. Chou and C. N. Yang, Phys. Lett. B 135, 175 (1984).

    Article  ADS  Google Scholar 

  30. S. L. Lim, Y. K. Lim, C. H. Oh, and K. K. Phua, Z. Phys. C 43, 621 (1989).

    Article  ADS  Google Scholar 

  31. C. Iso and K. Mori, Z. Phys. C 46, 59 (1990).

    Article  ADS  Google Scholar 

  32. F. W. Bopp, A. Capella, J. Ranft, and J. Tran Thanh Van, Z. Phys. C 51, 99 (1991).

    Article  Google Scholar 

  33. E. V. Shuryak, Nucl. Phys. A 661, 119c (1999).

    Article  ADS  Google Scholar 

  34. P. A. Bolokhov, M. A. Braun, G. A. Feofilov, et al., Int. Note/PHY, ALICE-INT-2002-20, CERN (Geneva, 2002).

  35. UA1 Collab. (G. Arnison et al.), Phys. Lett. B 118, 167 (1982).

    Article  ADS  Google Scholar 

  36. ABCDHW Collab. (A. Breakstone et al.), Phys. Lett. B 132, 463 (1983).

    Article  Google Scholar 

  37. A. Capella and A. Krzywicki, Phys. Rev. D 29, 1007 (1984).

    Article  ADS  Google Scholar 

  38. P. Aurenche, F. Bopp, and J. Ranft, Phys. Lett. B 147, 212 (1984).

    Article  ADS  Google Scholar 

  39. L. Van Hove, Phys. Lett. B 118, 138 (1982).

    Article  ADS  Google Scholar 

  40. A. Bialas, M. Bleszynski, and W. Czyz., Nucl. Phys. B 111, 461 (1976).

    Article  ADS  Google Scholar 

  41. NA49 Collab., Phys. Lett. B 459, 679 (1999).

    Article  ADS  Google Scholar 

  42. NA57 Collab. (F. Antinori et al.), J. Phys. G 31, 321 (2005).

    Article  ADS  Google Scholar 

  43. K. Adcox et al., Phys. Rev. C 69, 024904 (2004).

  44. N. Armesto and C. Pajares, Int. J Mod. Phys. A 15, 2019 (2000).

    MATH  ADS  Google Scholar 

  45. UA1 Collab. (C. Albajar et al.) Nucl. Phys. B 335, 261 (1990).

    Article  ADS  Google Scholar 

  46. C. Alt et al. (NA49 Collab.) and G. A. Feofilov et al. (SPbSU group), in Relativistic Nuclear Physics and Quantum Chromodynamics, Ed. by A. N. Sissakian, V. V. Burov, and A. I. Malakhov (JINR, Dubna, 2005), Vol. 1, p. 222.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Kolevatov.

Additional information

Original Russian Text © V.V. Vechernin, R.S. Kolevatov, 2007, published in Yadernaya Fizika, 2007, Vol. 70, No. 10, pp. 1846–1857.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vechernin, V.V., Kolevatov, R.S. On multiplicity and transverse-momentum correlations in collisions of ultrarelativistic ions. Phys. Atom. Nuclei 70, 1797–1808 (2007). https://doi.org/10.1134/S1063778807100158

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778807100158

PACS numbers

Navigation