Skip to main content
Log in

On triplet low-energy parameters of nucleon-nucleon scattering

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Triplet low-energy parameters of neutron-proton scattering, including high-order shape parameters, are calculated on the basis of approximating the effective-range function k cot δ t by polynomials and rational functions with the aid of the latest experimental data on phase shifts from the SAID nucleon-nucleon database. With the resulting values of the low-energy parameters, a good description of phase shifts over a broad energy interval is obtained by using the effective-range expansion featuring a small number of terms. The properties of the deuteron that were calculated on the basis of the values found for the triplet low-energy parameters of scattering agree very well with experimental values. The triplet low-energy parameters and the properties of the deuteron that were obtained here by using present-day data from the SAID database differ markedly from the analogous results obtained for data of the Nijmegen group. Possible reasons behind this discrepancy are discussed. Highly precise new approximate formulas for determining the shape parameter v 2 are proposed and are shown to be efficient in calculations. The effective-range expansion for the D wave is considered, and preliminary results of calculations of low-energy scattering parameters for this case are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau and Ya. A. Smorodinskiĭ, Zh. Éksp. Teor. Fiz. 14, 269 (1944).

    Google Scholar 

  2. J. S. Schwinger, Phys. Rev. 72, 742 (1947).

    Google Scholar 

  3. J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949).

    Article  MATH  ADS  Google Scholar 

  4. H. A. Bethe, Phys. Rev. 76, 38 (1949).

    Article  MATH  ADS  Google Scholar 

  5. L. Hulthén and M. Sugawara, in Handbuch der Physik, Ed. by S. Flügge (Springer-Verlag, New York, Berlin, 1957), p. 1.

    Google Scholar 

  6. H. P. Noyes, Phys. Rev. 130, 2025 (1963).

    Article  ADS  Google Scholar 

  7. R. Wilson, The Nucleon-Nucleon Interaction (Interscience, New York, 1963; Mir, Moscow, 1965).

    Google Scholar 

  8. T. L. Houk and R. Wilson, Rev. Mod. Phys. 39, 546 (1967); 40, 672 (1968).

    Article  ADS  Google Scholar 

  9. T. L. Houk, Phys. Rev. C 3, 1886 (1971).

    Article  ADS  Google Scholar 

  10. H. P. Noyes, Annu. Rev. Nucl. Sci. 22, 465 (1972).

    Article  ADS  Google Scholar 

  11. E. Lomon and R. Wilson, Phys. Rev. C 9, 1329 (1974).

    Article  ADS  Google Scholar 

  12. F. Lambert, O. Corbella, and Z. D. Thome, Nucl. Phys. B 90, 267 (1975).

    Article  ADS  Google Scholar 

  13. K. Hartt, Phys. Rev. C 22, 1377 (1980); 23, 2399 (1981).

    Article  ADS  Google Scholar 

  14. M. W. Kermode, L. J. Allen, J. P. McTavish, and A. McKerrell, J. Phys. G 10, 773 (1984).

    Article  ADS  Google Scholar 

  15. L. Mathelitsch and B. J. VerWest, Phys. Rev. C 29, 739 (1984).

    Article  ADS  Google Scholar 

  16. J. J. de Swart, C. P. F. Terheggen, and V. G. J. Stoks, Invited talk at The 3rd International Symposium “Dubna Deuteron 95”, Dubna, Russia, 1995, nucl-th/9509032.

  17. T. D. Cohen and J. M. Hansen, Phys. Rev. C 59, 13 (1999).

    Article  ADS  Google Scholar 

  18. T. D. Cohen and J. M. Hansen, Phys. Rev. C 59, 3047 (1999).

    Article  ADS  Google Scholar 

  19. V. A. Babenko and N. M. Petrov, Yad. Fiz. 66, 1359 (2003) [Phys. At. Nucl. 66, 1319 (2003)].

    Google Scholar 

  20. V. A. Babenko and N. M. Petrov, Yad. Fiz. 68, 244 (2005) [Phys. At. Nucl. 68, 219 (2005)]; nucl-th/0502041.

    Google Scholar 

  21. L. D. Blokhintsev, I. Borbely, and E. I. Dolinsky, Fiz. Élem. Chastits At. Yadra 8, 1189 (1977) [Sov. J. Part. Phys. 8, 485 (1977)].

    Google Scholar 

  22. D. W. L. Sprung, in Proceedings of the IX European Conference on Few-Body Problems in Physics, Tbilisi, USSR, 1984 (World Sci., Singapore, 1984), p. 234.

    Google Scholar 

  23. T. E. O. Ericson, Nucl. Phys. A 416, 281 (1984).

    Article  ADS  Google Scholar 

  24. S. Klarsfeld, J. Martorell, J. A. Oteo, et al., Nucl. Phys. A 456, 373 (1986).

    Article  ADS  Google Scholar 

  25. D. W. L. Sprung, H. Wu, and J. Martorell, Phys. Rev. C 42, 863 (1990).

    Article  ADS  Google Scholar 

  26. R. K. Bhaduri, W. Leidemann, G. Orlandini, and E. L. Tomusiak, Phys. Rev. C 42, 1867 (1990).

    Article  ADS  Google Scholar 

  27. M. W. Kermode, S. A. Moszkowski, M. M. Mustafa, and W. van Dijk, Phys. Rev. C 43, 416 (1991).

    Article  ADS  Google Scholar 

  28. P. F. Bedaque and U. van Kolck, Annu. Rev. Nucl. Part. Sci. 52, 339 (2002).

    Article  ADS  Google Scholar 

  29. U. van Kolck, Nucl. Phys. A 645, 273 (1999).

    Article  ADS  Google Scholar 

  30. M. P. Valderrama and E. R. Arriola, nucl-th/0407113.

  31. M. P. Valderrama and E. R. Arriola, Phys. Lett. B 580, 149 (2004); nucl-th/0405057.

    Article  ADS  Google Scholar 

  32. E. Epelbaum, W. Glöckle, and U.-G. Meissner, Eur. Phys. J. A 19, 401 (2004).

    Article  ADS  Google Scholar 

  33. E. Epelbaum, W. Glöckle, and U.-G. Meissner, Nucl. Phys. A 747, 362 (2005).

    Article  ADS  Google Scholar 

  34. R. A. Arndt, I. I. Strakovsky, and R. L. Workman, Partial-Wave Analysis Facility SAID, The George Washington University, http://gwdac.phys.gwu.edu; Phys. Rev. C 62, 034005 (2000).

  35. H. P. Noyes and D. Y. Wong, Phys. Rev. Lett. 3, 191 (1959).

    Article  ADS  Google Scholar 

  36. V. de Alfaro and T. Regge, Potential Scattering (North-Holland, Amsterdam, 1965; Mir, Moscow, 1966).

    MATH  Google Scholar 

  37. J. Dobaczewski, nucl-th/0301069.

  38. V. I. Kukulin, I. T. Obukhovsky, V. N. Pomerantsev, and A. Faessler, Yad. Fiz. 64, 1748 (2001) [Phys. At. Nucl. 64, 1667 (2001)].

    Google Scholar 

  39. G. A. Baker, Jr., and P. Graves-Morris, Pade Approximants (Addison-Wesley, London, 1981; Mir, Moscow, 1986).

    Google Scholar 

  40. V. A. Babenko and N. M. Petrov, Yad. Fiz. 63, 1798 (2000) [Phys. At. Nucl. 63, 1709 (2000)].

    Google Scholar 

  41. W. T. H. van Oers and J. D. Seagrave, Phys. Lett. B 24, 562 (1967).

    Article  ADS  Google Scholar 

  42. M. Cini, S. Fubini, and A. Stanghellini, Phys. Rev. 114, 1633 (1959).

    Article  MATH  ADS  Google Scholar 

  43. K. Hartt and P. V. A. Yidana, Phys. Rev. C 31, 1105 (1985).

    Article  ADS  Google Scholar 

  44. W. van Dijk, M. W. Kermode, and D. C. Zheng, Phys. Rev. C 47, 1898 (1993).

    Article  ADS  Google Scholar 

  45. W. van Dijk and M. W. Kermode, Phys. Rev. C 45, 1528 (1992).

    Article  ADS  Google Scholar 

  46. C. W. Wong, Nucl. Phys. A 536, 269 (1992).

    Article  ADS  Google Scholar 

  47. M. W. Kermode and M. M. Mustafa, J. Phys. G 17, L101 (1991).

    Article  ADS  Google Scholar 

  48. M. W. Kermode, A. McKerrell, J. P. McTavish, and L. J. Allen, Z. Phys. A 303, 167 (1981).

    Article  Google Scholar 

  49. R. V. Reid, Jr., Ann. Phys. (N.Y.) 50, 411 (1968).

    Article  ADS  Google Scholar 

  50. V. I. Kukulin, V. M. Krasnopol’skiĭ, V. N. Pomerantsev, and P. B. Sazonov, Yad. Fiz. 43, 559 (1986) [Sov. J. Nucl. Phys. 43, 355 (1986)].

    Google Scholar 

  51. M. M. Mustafa, E. M. Hassan, M. W. Kermode, and E. M. Zahran, Phys. Rev. C 45, 2603 (1992).

    Article  ADS  Google Scholar 

  52. Nijmegen NN-Online program, http://nn-online.org

  53. O. Dumbrajs, R. Koch, H. Pilkuhn, et al., Nucl. Phys. B 216, 277 (1983).

    Article  ADS  Google Scholar 

  54. J. M. Blatt and L. C. Biedenharn, Phys. Rev. 86, 399 (1952).

    Article  MATH  ADS  Google Scholar 

  55. H. P. Stapp, T. J. Ypsilantis, and N. Metropolis, Phys. Rev. 105, 302 (1957).

    Article  ADS  Google Scholar 

  56. V. G. J. Stoks, R. A. M. Klomp, M. C. M. Rentmeester, and J. J. de Swart, Phys. Rev. C 48, 792 (1993).

    Article  ADS  Google Scholar 

  57. R. Machleidt and I. Slaus, J. Phys. G 27, R69 (2001).

    Article  ADS  Google Scholar 

  58. V. G. J. Stoks, R. A. M. Klomp, C. P. F. Terheggen, and J. J. de Swart, Phys. Rev. C 49, 2950 (1994).

    Article  ADS  Google Scholar 

  59. R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C 51, 38 (1995).

    Article  ADS  Google Scholar 

  60. R. Machleidt, F. Sammarruca, and Y. Song, Phys. Rev. C 53, 1483 (1996).

    Article  ADS  Google Scholar 

  61. R. Machleidt, Phys. Rev. C 63, 024001 (2001).

    Google Scholar 

  62. M. P. Locher and T. Mizutani, Phys. Rep. 46, 43 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  63. C. van der Leun and C. Anderliesten, Nucl. Phys. A 380, 261 (1982).

    Article  ADS  Google Scholar 

  64. I. Borbély, W. Grübler, V. König, et al., Phys. Lett. B 160, 17 (1985).

    Article  ADS  Google Scholar 

  65. R. W. Berard, F. R. Buskirk, E. B. Dally, et al., Phys. Lett. B 47, 355 (1973).

    Article  ADS  Google Scholar 

  66. G. G. Simon, Ch. Schmitt, and V. H. Walther, Nucl. Phys. A 364, 285 (1981).

    Article  ADS  Google Scholar 

  67. D. W. L. Sprung and H. Wu, Acta Phys. Pol. B 24, 503 (1993).

    Google Scholar 

  68. J. Martorell, D. W. L. Sprung, and D. C. Zheng, Phys. Rev. C 51, 1127 (1995).

    Article  ADS  Google Scholar 

  69. I. Sick and D. Trautmann, Phys. Lett. B 375, 16 (1996).

    Article  ADS  Google Scholar 

  70. G. L. Squires and A. T. Stewart, Proc. R. Soc. London, Ser. A 230, 19 (1955).

    Article  ADS  Google Scholar 

  71. H. Kaiser, H. Rauch, G. Badurek, et al., Z. Phys. A 291, 231 (1979).

    Article  Google Scholar 

  72. D. Plümper, J. Flender, and M. F. Gari, Phys. Rev. C 49, 2370 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.A. Babenko, N.M. Petrov, 2006, published in Yadernaya Fizika, 2006, Vol. 69, No. 9, pp. 1586–1605.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babenko, V.A., Petrov, N.M. On triplet low-energy parameters of nucleon-nucleon scattering. Phys. Atom. Nuclei 69, 1552–1572 (2006). https://doi.org/10.1134/S1063778806090134

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778806090134

PACS numbers

Navigation