Skip to main content
Log in

Kaon Electroproduction on the Proton

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A model of kaon photoproduction in the p(e, eK+)Λ, p(e, eK+0, and p(e, eK0+ processes with the square of the momentum transfer Q2 up to 2.5 GeV2 is proposed. The photoproduction amplitude includes the s-, t-, and u-channel Born and s- and u-channel resonance contributions calculated in the tree approximation. The unitarity of the photoproduction amplitude is partially recovered by introducing the momentum dependence of the hadron decay widths of resonances and an additional effective width taking into account the effect of coupling between open channels without strangeness. The specificities of the calculations are allowance for the longitudinal electromagnetic coupling of photons to hadrons and the introduction of strongly Q2-dependent suppression factors for the Born and resonance components of the photoproduction amplitude. This approach provides an accurate description of the existing data on the angular and Q2 distributions for the p(e, eK+)Λ and p(e, eK+0 reactions. This model also correctly reproduces the dependence of the ratio σ(Σ0)/σ(Λ) separately for longitudinally and transversely polarized components of the kaon photoproduction cross section in the p(e, eK+)Λ and p(e, eK+0 processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. E. Klempt and J. M. Richard, Rev. Mod. Phys. 82, 1095 (2010).

    Article  ADS  Google Scholar 

  2. L. Syukurilla and R. Mart, Int. J. Mod. Phys. E 24, 1550008 (2015).

    Article  ADS  Google Scholar 

  3. D. Skoupil and P. Bydžovský, Phys. Rev. C 93, 025204 (2016).

    Article  ADS  Google Scholar 

  4. M. V. Egorov, J. Phys. G: Nucl. Part. Phys. 47, 125006 (2020).

    Article  ADS  Google Scholar 

  5. D. Skoupil and P. Bydžovský, Phys. Rev. C 97, 025202 (2018).

    Article  ADS  Google Scholar 

  6. A. Fix and H. Arenhövel, Eur. Phys. J. C 25, 115 (2005).

    Article  Google Scholar 

  7. P. Achenbach et al., Eur. Phys. J. A 48, 14 (2012).

    Article  ADS  Google Scholar 

  8. T. Vrancx, L. De Cruz, J. Ryckebuschm, and P. Vancraeyveld, Phys. Rev. C 84, 045201 (2011).

    Article  ADS  Google Scholar 

  9. T. Mart, C. Bennhold, H. Haberzettl, and L. Tiator, https://maid.kph.uni-mainz.de/kaon/.

  10. A. Bleckmann, S. Herda, U. Opara, and W. Schulz, Z. Phys. 239, 1 (1970).

    ADS  Google Scholar 

  11. M. Mohring et al., Phys. Rev. C 67, 055205 (2003).

    Article  ADS  Google Scholar 

  12. M. Coman et al., Phys. Rev. C 81, 052201(R) (2010).

  13. M. Egorov, Phys. Rev. C 101, 065205 (2020).

    Article  ADS  Google Scholar 

  14. P. Ambrozewicz et al., Phys. Rev. C 75, 045203 (2007).

    Article  ADS  Google Scholar 

  15. M. Guidal, J. M. Laget, and M. Vanderhaeghen, Phys. Rev. C 61, 025204 (2000).

    Article  ADS  Google Scholar 

  16. S. Janssen, R. Ryckebusch, and T. van Cauteren, Phys. Rev. C 67, 052201(R) (2003).

  17. C. N. Brown et al., Phys. Rev. Lett. 28, 1086 (1972).

    Article  ADS  Google Scholar 

  18. P. Markowitz and A. Acha, Int. J. Mod. Phys. E 19, 2383 (2010).

    Article  ADS  Google Scholar 

  19. M. E. McCracken et al., Phys. Rev. C 81, 025201 (2010).

    Article  ADS  Google Scholar 

  20. B. Dey et al., Phys. Rev. C 82, 025202 (2010).

    Article  ADS  Google Scholar 

  21. H. Schmieden et al., Few Body Syst. 59, 135 (2018).

    Article  ADS  Google Scholar 

  22. P. Aguar-Bartolomé et al., Phys. Rev. C 88, 044601 (2013).

    Article  ADS  Google Scholar 

  23. C. S. Akondi et al., Eur. Phys. J. A 55, 202 (2019).

    Article  ADS  Google Scholar 

  24. R. Lawall et al., Eur. Phys. J. A 24, 275 (2005).

    Article  ADS  Google Scholar 

  25. R. Castelijins et al., Eur. Phys. J. A 35, 39 (2008).

    Article  ADS  Google Scholar 

  26. J. C. David, C. Fayard, G. H. Lamot, and B. Saghai, Phys. Rev. C 53, 2613 (1996).

    Article  ADS  Google Scholar 

  27. K. Glander et al. (SAPHIR Collab.), Eur. Phys. J. A 19, 251 (2004). https://doi.org/10.1140/epja/i2003-10119-x

    Article  ADS  Google Scholar 

  28. M. Tran et al. (SAPHIR Collab.), Phys. Lett. 445, 20 (1998). https://doi.org/10.1016/S0370-2693(98)01393-8

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-02-00004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Egorov.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorov, M.V., Postnikov, V.I. Kaon Electroproduction on the Proton. J. Exp. Theor. Phys. 133, 32–43 (2021). https://doi.org/10.1134/S1063776121060121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121060121

Navigation