Skip to main content
Log in

Electromagnetically induced transparency resonances inverted in magnetic field

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The phenomenon of electromagnetically induced transparency (EIT) is investigated in a Λ-system of the 87Rb D 1 line in an external transverse magnetic field. Two spectroscopic cells having strongly different values of the relaxation rates γrel are used: an Rb cell with antirelaxation coating (L ~ 1 cm) and an Rb nanometric- thin cell (nanocell) with a thickness of the atomic vapor column L = 795 nm. For the EIT in the nanocell, we have the usual EIT resonances characterized by a reduction in the absorption (dark resonance (DR)), whereas for the EIT in the Rb cell with an antirelaxation coating, the resonances demonstrate an increase in the absorption (bright resonances (BR)). We suppose that such an unusual behavior of the EIT resonances (i.e., the reversal of the sign from DR to BR) is caused by the influence of an alignment process. The influence of alignment strongly depends on the configuration of the coupling and probe frequencies as well as on the configuration of the magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, Nuovo Cimento Soc. Ital. Fis. B 36, 5 (1976).

    Article  ADS  Google Scholar 

  2. S. Harris, Phys. Today 50, 36 (1997).

    Article  Google Scholar 

  3. R. Wynands and A. Nagel, Appl. Phys. B 68, 1 (1999).

    Article  ADS  Google Scholar 

  4. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).

    Article  ADS  Google Scholar 

  5. C. Andreeva, S. Cartaleva, Y. Dancheva, V. Biancalana, A. Burchianti, C. Marinelli, E. Mariotti, L. Moi, and K. Nasyrov, Phys. Rev. A. 66, 012502 (2002).

    Article  ADS  Google Scholar 

  6. S. Knappe, L. Hollberg, and J. Kitching, Opt. Lett. 29, 388 (2004).

    Article  ADS  Google Scholar 

  7. Y. Pashayan-Leroy, C. Leroy, A. Sargsyan, A. Papoyan, and D. Sarkisyan, J. Opt. Soc. Am. B 24, 1829 (2007).

    Article  ADS  Google Scholar 

  8. M. A. Bouchiat and J. Brossel, Phys. Rev. A. 147, 41 (1966).

    Article  ADS  Google Scholar 

  9. D. Budker, V. Yashchuk, and M. Zolotorev, Phys. Rev. Lett. 81, 5788 (1998).

    Article  ADS  Google Scholar 

  10. M. Klein, M. Hohensee, D. F. Phillips, and R. L. Walsworth, Phys. Rev. A. 83, 013826 (2011).

    Article  ADS  Google Scholar 

  11. H. S. Moon and H.-J. Kim, Opt. Express 22, 18605 (2014).

    ADS  MathSciNet  Google Scholar 

  12. S. Cartaleva, G. Alzetta, Y. Dancheva, Ch. Andreeva, and R. M. Celli, Bulgarian J. Phys. 27, 21 (2000).

    Google Scholar 

  13. B. Wang, Y. Han, J. Xiao, X. Yang, Ch. Zhang, H. Wang, Min Xiao, and K. Peng, Phys. Rev. A. 75, 051801-R (2007).

  14. C. Andreeva, A. Atvars, M. Auzinsh, K. Blush, S. Cartaleva, L. Petrov, and D. Slavov, Phys. Rev. A. 76, 063804 (2007).

    Article  ADS  Google Scholar 

  15. L. Margalit, M. Rosenbluh, and A. D. Wilson-Gordon, Phys. Rev. A. 87, 033808 (2013).

    Article  ADS  Google Scholar 

  16. L. Margalit, M. Rosenbluh, and A. D. Wilson-Gordon, Phys. Rev. A. 88, 023827 (2013).

    Article  ADS  Google Scholar 

  17. A. Sargsyan, C. Leroy, Y. Pashayan-Leroy, R. Mirzoyan, A. Papoyan, and D. Sarkisyan, Appl. Phys. B 105, 767 (2011).

    Article  ADS  Google Scholar 

  18. X. Wei, J. Wu, G. Sun, Z. Shao, Z. Kang, Y. Jiang, and J.-Y. Gao, Phys. Rev. A. 72, 023806 (2005).

    Article  ADS  Google Scholar 

  19. A. Sargsyan, R. Mirzoyan, T. Vartanyan, and D. Sarkisyan, J. Exp. Theor. Phys. 118 (3), 359 (2014).

    Article  ADS  Google Scholar 

  20. M. Auzinsh, D. Budker, and S. M. Rochester, Optically Polarized Atoms: Understanding Light-Atom Interactions (Oxford University Press, Oxford, United Kingdom, 2010).

    Google Scholar 

  21. D. Budker, D. F. Kimball, and D. P. DeMille, Atomic Physics (Oxford University Press, Oxford, United Kingdom, 2004).

    Google Scholar 

  22. S. Gozzini and A. Lucchesini, Eur. Phys. J. D 28, 157 (2004).

    Article  ADS  Google Scholar 

  23. V. Wong, R. S. Bennink, A. M. Marino, R. W. Boyd, C. R. Stroud, Jr., and F. A. Narducci, Phys. Rev. A. 70, 053811 (2004).

    Article  ADS  Google Scholar 

  24. R. Meshulam, T. Zigdon, A. D. Wilson-Gordon, and H. Friedmann, Opt. Lett. 32, 2318 (2007).

    Article  ADS  Google Scholar 

  25. A. Sargsyan, M. G. Bason, D. Sarkisyan, A. K. Mohapatra, and C. S. Adams, Opt. Spectrosc. 109 (4), 529 (2010).

    Article  ADS  Google Scholar 

  26. L. Margalit, M. Rosenbluh, and A. D. Wilson-Gordon, Phys. Rev. A. 85, 063809 (2012).

    Article  ADS  Google Scholar 

  27. A. Sargsyan, D. Sarkisyan, D. Staedter, and A. M. Akulshin, Opt. Spectrosc. 101 (5), 762 (2006).

    Article  ADS  Google Scholar 

  28. K. Nasyrov, V. Entin, N. Nikolov, N. Petrov, and S. Cartaleva, Proc. SPIE 9447, 944704 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sarkisyan.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sargsyan, A., Sarkisyan, D., Pashayan-Leroy, Y. et al. Electromagnetically induced transparency resonances inverted in magnetic field. J. Exp. Theor. Phys. 121, 966–975 (2015). https://doi.org/10.1134/S1063776115130142

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115130142

Keywords

Navigation