Skip to main content
Log in

Dispersion transition and the nonergodicity of the disordered nanoporous medium-nonwetting liquid system

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The experiments in which a nonwetting liquid does not flow from a disordered nanoporous medium are described. The outflow is shown to depend on the degree of filling of the porous medium and its temperature in a critical manner. A physical mechanism is proposed where the transition of a system of liquid nanoclusters in a confinement into a metastable state in narrow filling and temperature ranges results from the appearance of a potential barrier due to the fluctuations of the collective “multiparticle” interaction of liquid nanoclusters in neighboring pores of different sizes at the shell of a percolation cluster of filled pores. The energy of a metastable state forms a potential relief with numerous maxima and minima in the space of a porous medium. The dispersed liquid volume in a metastable state is calculated with an analytical percolation theory for a ground state with an infinite percolation cluster. The outflow time distribution function of pores is calculated, and a power law is obtained for the decrease in nonwetting liquid volume retained in a porous medium with increasing time. The relaxation of the system under study is a multistage process accompanied by discontinuous equilibrium and overcoming of numerous local maxima of a potential relief. The formation of the metastable state of retained nonwetting liquid results from the nonergodicity properties of a disordered porous medium. The proposed model can describe the detected dependences of dispersed liquid volume on the degree of filling and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Iwatsubo, C. V. Suciu, M. Ikenaga, M. Ikenagao, and K. Yaguchio, J. Sound Vib. 308, 579 (2007).

    Article  ADS  Google Scholar 

  2. V. A. Eroshenko, Proc. Inst. Mech. Eng., Part D 221, 285 (2007).

    Article  Google Scholar 

  3. A. Han and Y. Qiao, Appl. Phys. Lett. 91, 173123 (2007).

    Article  ADS  Google Scholar 

  4. L. Liu, H. Lim, W. Lu, Y. Qiao, and X. Chen, Appl. Phys. Express 6, 015202 (2013).

    Article  ADS  Google Scholar 

  5. W. Lu, T. Kim, A. Han, and Y. Qiao, Mater. Chem. Phys. 133, 259 (2012).

    Article  Google Scholar 

  6. A. T. Krummel, S. S. Datta, S. Münster, and D. A. Weitz, AIChE J. 59, 1022 (2013).

    Article  Google Scholar 

  7. S. S. Datta and D. A. Weitz, Europhys. Lett. 101, 14002 (2013).

    Article  ADS  Google Scholar 

  8. A. Parmigiani, C. Huber, O. Bachmann, and B. Chopard, J. Fluid Mech. 686, 40 (2011).

    Article  ADS  MATH  Google Scholar 

  9. J. K. Carson, S. J. Lovatt, D. J. Tanner, and A. C. Cleland, Int. J. Heat Mass Transfer 48, 2150 (2005).

    Article  MATH  Google Scholar 

  10. Porous Media: Applications in Biological Systems and Biotechnology, Ed. by K. Vafai (CRC Press, Boca Raton, Florida, United States, 2011).

    Google Scholar 

  11. E. Mamontov, Y. Kumzerov, and S. Vakhrushev, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 71, 061502 (2005).

    Article  Google Scholar 

  12. Y. Kumzerov, A. Nabereznov, S. Vakhrushev, and B. N. Savenko, Phys. Rev. B: Condens. Matter 52, 4772 (1995).

    Article  ADS  Google Scholar 

  13. A. Y. Fadeev and V. A. Eroshenko, J. Colloid Interface Sci. 187, 275 (1997).

    Article  Google Scholar 

  14. S. Lowell, J. E. Shields, M. A. Thomas, and M. Thommes, in Particle Technology Series, Vol. 16: Characterization of Porous Solids and Powders: Surface Area, Pore Size, and Density (Academic, Dordrecht, The Netherlands, 2004).

    Google Scholar 

  15. H.-J. Woo and P. Monson, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 67, 041207 (2003).

    Article  ADS  Google Scholar 

  16. R. Evans, J. Phys.: Condens. Matter 2, 8989 (1990).

    ADS  Google Scholar 

  17. P. G. De Gennes, J. Phys. Chem. 88(26), 6469 (1984).

    Article  Google Scholar 

  18. E. Kierlik, P. Monson, M. Rosinberg, L. Sarkisov, and G. Tarjus, Phys. Rev. Lett. 87, 055701 (2001).

    Article  ADS  Google Scholar 

  19. B. Lefevre, A. Saugey, J. L. Barrat, L. Bocquet, E. Charlaix, P. F. Gobin, and G. Vigier, J. Chem. Phys. 120, 4927 (2004).

    Article  ADS  Google Scholar 

  20. F. Porcheron, M. Thommes, R. Ahmad, and P. A. Monson, Langmuir 23, 3372 (2007).

    Article  Google Scholar 

  21. S. P. Rigby and K. J. Edler, J. Colloid Interface Sci. 250, 175 (2002).

    Article  Google Scholar 

  22. V. D. Borman, A. A. Belogorlov, A. M. Grekhov, G. V. Lisichkin, V. N. Tronin, and V. I. Troyan, J. Exp. Theor. Phys. 100(2), 385 (2005).

    Article  ADS  Google Scholar 

  23. V. D. Borman, A. M. Grekhov, and V. I. Troyan, J. Exp. Theor. Phys. 91(1), 170 (2000).

    Article  ADS  Google Scholar 

  24. F. Porcheron, P. A. Monson, and M. Thommes, Langmuir 20, 6482 (2004).

    Article  Google Scholar 

  25. M. Vasin, J. Stat. Mech.: Theor. Exp. 2011, P05009 (2011).

    Article  Google Scholar 

  26. V. S. Dotsenko, Phys.—Usp. 38(5), 457 (1995).

    Article  ADS  Google Scholar 

  27. I. Ya. Korenblit and E. F. Shender, Sov. Phys.—Usp. 32(2), 139 (1989).

    Article  ADS  Google Scholar 

  28. V. S. Dotsenko, Phys.—Usp. 36(6), 455 (1993).

    Article  ADS  Google Scholar 

  29. A. Han, X. Kong, and Y. Qiao, J. Appl. Phys. 100, 014308 (2006).

    Article  ADS  Google Scholar 

  30. Y. Qiao, G. Cao, and X. Chen, J. Am. Chem. Soc. 129, 2355 (2007).

    Article  Google Scholar 

  31. X. Kong and Y. Qiao, Appl. Phys. Lett. 86, 151919 (2005).

    Article  ADS  Google Scholar 

  32. F. B. Surani and Y. Qiao, J. Appl. Phys. 100, 034311 (2006).

    Article  ADS  Google Scholar 

  33. B. Xu, Y. Qiao, Y. Li, Q. Zhou, and X. Chen, Appl. Phys. Lett. 98, 221909 (2011).

    Article  ADS  Google Scholar 

  34. A. Han, W. Lu, V. K. Punyamurtula, T. Kim, and Y. Qiao, J. Appl. Phys. 105, 024309 (2009).

    Article  ADS  Google Scholar 

  35. V. Eroshenko, R.-C. Regis, M. Soulard, and J. Patarin, C. R. Phys. 3, 111 (2002).

    Article  ADS  Google Scholar 

  36. A. Han, W. Lu, T. Kim, X. Chen, and Y. Qiao, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 78, 031408 (2008).

    Article  ADS  Google Scholar 

  37. L. Liu, X. Chen, W. Lu, A. Han, and Y. Qiao, Phys. Rev. Lett. 102, 184501 (2009).

    Article  ADS  Google Scholar 

  38. L. Coiffard and V. Eroshenko, J. Colloid Interface Sci. 300, 304 (2006).

    Article  Google Scholar 

  39. F. Gomez, R. Denoyel, and J. Rouquerol, Langmuir 16, 4374 (2000).

    Article  Google Scholar 

  40. V. Y. Gusev, Langmuir 10, 235 (1994).

    Article  Google Scholar 

  41. X. Kong and Y. Qiao, Philos. Mag. Lett. 85, 331 (2005).

    Article  ADS  Google Scholar 

  42. H. Giesche, Part. Part. Syst. Charact. 23, 9 (2006).

    Article  Google Scholar 

  43. N. Wardlaw and M. McKellar, Powder Technol. 29, 127 (1981).

    Article  Google Scholar 

  44. J. R. Edison and P. A. Monson, J. Low Temp. Phys. 157, 395 (2009).

    Article  ADS  Google Scholar 

  45. P. S. Grinchuk and O. S. Rabinovich, J. Exp. Theor. Phys. 96(2), 301 (2003).

    Article  ADS  Google Scholar 

  46. B. Lefevre, A. Saugey, J. Barrat, L. Bocquet, E. Charlaix, P. F. Gobin, and G. Vigier, Colloids Surf., A 241, 265 (2004).

    Article  Google Scholar 

  47. V. D. Borman, A. A. Belogorlov, G. V. Lisichkin, V. N. Tronin, and V. I. Troyan, J. Exp. Theor. Phys. 108(3), 389 (2009).

    Article  ADS  Google Scholar 

  48. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics: Part 1 (Butterworth-Heinemann, Oxford, 2005; Fizmatlit, Moscow, 2010).

    Google Scholar 

  49. V. D. Borman, A. A. Belogorlov, V. A. Byrkin, V. N. Tronin, and V. I. Troyan, JETP Lett. 95(10), 511 (2012).

    Article  ADS  Google Scholar 

  50. V. D. Borman, A. A. Belogorlov, V. A. Byrkin, G. V. Lisichkin, V. N. Tronin, and V. I. Troyan, J. Exp. Theor. Phys. 112(3), 385 (2011).

    Article  ADS  Google Scholar 

  51. L. I. Kheifets and A. V. Neimark, Multi-Phase Processes in Porous Media (Khimiya, Moscow, 1982) [in Russian].

    Google Scholar 

  52. G. V. Lisichkin, Chemistry of Grafted Surface Compounds (Fizmatlit, Moscow, 2003) [in Russian].

    Google Scholar 

  53. R. Helmy, Y. Kazakevich, C. Ni, and A. Y. Fadeev, J. Am. Chem. Soc. 127, 12446 (2005).

    Article  Google Scholar 

  54. Handbook of Chemistry and Physics: A Ready Reference Book of Chemical and Physical Data, Ed. by W. M. Haynes, D. R. Lide, and T. J. Bruno (CRC Press, Boca Raton, Florida, United States, 2012).

    Google Scholar 

  55. Y. Liu, X. Wang, J. Luo, and X. C. Lu, Appl. Surf. Sci. 255, 9430 (2009).

    Article  ADS  Google Scholar 

  56. T. Nishino, M. Meguro, K. Nakamae, M. Matsushita, and Y. Ueda, Langmuir 15, 4321 (1999).

    Article  Google Scholar 

  57. M. I. Ozhovan and K. N. Semenov, Sov. Phys. J. Exp. Theor. Phys. 75(4), 696 (1992).

    Google Scholar 

  58. M. Sahimi, Rev. Mod. Phys. 65, 1393 (1993).

    Article  ADS  Google Scholar 

  59. M. Isichenko, Rev. Mod. Phys. 64, 961 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  60. Y. Qiao, V. K. Punyamurtula, G. Xian, V. M. Karbhari, and A. Han, Appl. Phys. Lett. 92, 063109 (2008).

    Article  ADS  Google Scholar 

  61. W. Haller, J. Chem. Phys. 42, 686 (1965).

    Article  ADS  Google Scholar 

  62. V. D. Borman, A. A. Belogorlov, V. A. Byrkin, G. V. Lisichkin, V. N. Tronin, and V. I. Troyan, J. Phys.: Conf. Ser. 291, 012044 (2011).

    ADS  Google Scholar 

  63. V. D. Borman, A. A. Belogorlov, V. A. Byrkin, V. N. Tronin, and V. I. Troyan, arXiv:1302.5547.

  64. Tables of Physical Quantities: A Reference Book, Ed. by I. K. Kikoin (Atomizdat, Moscow, 1976) [in Russian].

    Google Scholar 

  65. S. R. Valluri, D. J. Jeffrey, and R. M. Corless, Can. J. Phys. 78, 823 (2000).

    ADS  Google Scholar 

  66. L. A. Maksimov and I. Ya. Polishchuk, Lectures on Physical Kinetics (Moscow Institute of Physics and Technology (State University), Moscow, 2007) [in Russian].

    Google Scholar 

  67. M. G. Vasin, Doctoral Dissertation in Mathematical Physics (Institute for High Pressure Physics of the Russian Academy of Sciences, Troitsk, Moscow, Russia, 2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Borman.

Additional information

Original Russian Text © V.D. Borman, A.A. Belogorlov, V.A. Byrkin, V.N. Tronin, V.I. Troyan, 2013, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 144, No. 6, pp. 1290–1318.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borman, V.D., Belogorlov, A.A., Byrkin, V.A. et al. Dispersion transition and the nonergodicity of the disordered nanoporous medium-nonwetting liquid system. J. Exp. Theor. Phys. 117, 1139–1163 (2013). https://doi.org/10.1134/S1063776113140094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776113140094

Keywords

Navigation