Skip to main content
Log in

Optical nutation in the exciton range of spectrum

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Optical nutation in the exciton range of spectrum is studied in the mean field approximation taking into account exciton-photon and elastic exciton-exciton interactions. It is shown that the features of nutation development are determined by the initial exciton and photon densities, the resonance detuning, the nonlinearity parameter, and the initial phase difference. For nonzero initial exciton and photon concentrations, three regimes of temporal evolution of excitons and photons exist: periodic conversion of excitons to photons and vice versa, aperiodic conversion of photons to excitons, and the rest regime. In the rest regime, the initial exciton and photon densities are nonzero and do not change with time. The oscillation amplitudes and periods of particle densities determined by the system parameters are found. The exciton self-trapping and photon trapping appearing in the system at threshold values of the nonlinearity parameter were predicted. As this parameter increases, the oscillation amplitudes of the exciton and photon densities sharply change at the critical value of the nonlinearity parameter. These two phenomena are shown to be caused by the elastic exciton-exciton interaction, resulting in the dynamic concentration shift of the exciton level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Apanasevich, Fundamentals of the Theory of Interaction between Light and Matter (Nauka i Tekhnika, Minsk, 1977) [in Russian].

    Google Scholar 

  2. A. I. Burshtein and A. Yu. Pusep, Sov. Phys. JETP 42(6), 978 (1975).

    ADS  Google Scholar 

  3. A. S. Davidov and A. A. Sericov, Phys. Status Solidi B 56, 351 (1973).

    Article  ADS  Google Scholar 

  4. V. V. Samartsev, U. E. Sheibut, and U. S. Ivanov, Spectrosc. Lett. 9, 57 (1976).

    Article  ADS  Google Scholar 

  5. S. N. Belkin, S. A. Moskalenko, A. Kh. Rotaru, and P. I. Khadzhi, Izv. Akad. Nauk SSSR, Ser. Fiz. 43, 355 (1979); S. N. Belkin, S. A. Moskalenko, A. Kh. Rotaru, and P. I. Khadzhi, Sov. Phys. Solid State 22 (7), 1144 (1980).

    ADS  Google Scholar 

  6. P. I. Khadzhi, S. A. Moskalenko, and S. N. Belkin, JETP Lett. 29(4), 200 (1979).

    ADS  Google Scholar 

  7. S. A. Moskalenko, P. I. Khadzhi, and A. Kh. Rotaru, Solitons and Nutation in the Exciton Region of the Spectrum (Shtiintsa, Chisinau, 1979) [in Russian].

    Google Scholar 

  8. P. I. Khadzhi, Nonlinear Optical Processes in Systems of Excitons and Biexcitons in Semiconductors (Shtiintsa, Chisinau, 1985) [in Russian].

    Google Scholar 

  9. E. S. Kiseleva and P. I. Khadzhi, Sov. Phys. Solid State 22(11), 1995 (1980).

    Google Scholar 

  10. P. I. Khadzhi and V. V. Vasil’ev, JETP 104(5), 805 (2007); P. I. Khadzhi and V. V. Vasil’ev, Opt. Spectrosc. 104 (3), 351 (2008); P. I. Khadzhi and V. V. Vasil’ev, Kvantovaya Elektron. (Moscow) 40, 907 (2010).

    Article  ADS  Google Scholar 

  11. S. A. Moskalenko and D. W. Snoke, Bose-Einstein Condensation of Excitons and Biexcitons (Cambridge University Press, Cambridge, 2000).

    Book  Google Scholar 

  12. G. A. Korn, and T. M. Korn, Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review (McGraw-Hill, New York, 1968; Nauka, Moscow, 1978).

    MATH  Google Scholar 

  13. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Nauka, Moscow, 1971; Academic, London, 1980).

    Google Scholar 

  14. G. J. Milburn, J. Corney, E. M. Wright, and D. F. Walls, Phys. Rev. A: At., Mol., Opt. Phys. 55, 4318 (1997).

    Article  ADS  Google Scholar 

  15. A. Smerzi, S. Fantony, S. Giovanazzi, and S. R. Shenoy, Phys. Rev. Lett. 79, 4950 (1997).

    Article  ADS  Google Scholar 

  16. S. Raghavan, A. Smerzi, S. Fantony, and S. R. Shenoy, Phys. Rev. A: At., Mol., Opt. Phys. 59, 620 (1999).

    Article  ADS  Google Scholar 

  17. T. Anker, M. Albiez, R. Gati, S. Hunsmann, B. Eiermann, A. Trombettoni, and M. K. Oberthaler, Phys. Rev. Lett. 94, 020403 (2005).

    Article  ADS  Google Scholar 

  18. P. I. Khadzhi and O. F. Vasilieva, J. Nanoelectron. Optoelectron. 6, 119 (2011).

    Article  Google Scholar 

  19. M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and M. K. Oberthaler, Phys. Rev. Lett. 95, 010402 (2005).

    Article  ADS  Google Scholar 

  20. A. P. Zingan and P. I. Khadzhi, Opt. Spectrosc. 113(6), 593 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Vasiliev.

Additional information

Original Russian Text © P.I. Khadzhi, V.V. Vasiliev, 2013, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 144, No. 2, pp. 273–290.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khadzhi, P.I., Vasiliev, V.V. Optical nutation in the exciton range of spectrum. J. Exp. Theor. Phys. 117, 232–247 (2013). https://doi.org/10.1134/S1063776113100130

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776113100130

Keywords

Navigation