Skip to main content
Log in

Propagation of vector solitons in a quasi-resonant medium with stark deformation of quantum states

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The nonlinear dynamics of a vector two-component optical pulse propagating in quasi-resonance conditions in a medium of nonsymmetric quantum objects is investigated for Stark splitting of quantum energy levels by an external electric field. We consider the case when the ordinary component of the optical pulse induces σ transitions, while the extraordinary component induces the π transition and shifts the frequencies of the allowed transitions due to the dynamic Stark effect. It is found that under Zakharov-Benney resonance conditions, the propagation of the optical pulse is accompanied by generation of an electromagnetic pulse in the terahertz band and is described by the vector generalization of the nonlinear Yajima-Oikawa system. It is shown that this system (as well as its formal generalization with an arbitrary number of optical components) is integrable by the inverse scattering transformation method. The corresponding Darboux transformations are found for obtaining multisoliton solutions. The influence of transverse effects on the propagation of vector solitons is investigated. The conditions under which transverse dynamics leads to self-focusing (defocusing) of solitons are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1995; Mir, Moscow, 1996).

    Google Scholar 

  2. Yu. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, New York, 2003; Fizmatlit, Moscow, 2005).

    Google Scholar 

  3. N. N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams (Chapman and Hall, London, 1997; Fizmatlit, Moscow, 2003).

    Google Scholar 

  4. A. I. Maimistov, Pramana 57, 953 (2001).

    Article  ADS  Google Scholar 

  5. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (Nauka, Moscow, 1988; American Institute of Physics, New York, 1991).

    Google Scholar 

  6. A. M. Basharov and A. I. Maimistov, Opt. Spectrosc. 88(3), 380 (2000).

    Article  ADS  Google Scholar 

  7. A. I. Maimistov, Kvantovaya Electron. (Moscow) 22, 936 (1995).

    Google Scholar 

  8. S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons: The Inverse Scattering Method (Nauka, Moscow, 1980; Springer, New York, 1984).

    MATH  Google Scholar 

  9. G. L. Lamb, Elements of Soliton Theory (Wiley, New York, 1980; Mir, Moscow, 1983).

    MATH  Google Scholar 

  10. Solitons, Ed. by R. Bullough and Ph. Caudry (Springer, Heidelberg, 1980; Mir, Moscow, 1983).

    MATH  Google Scholar 

  11. R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations (Academic, New York, 1984; Mir, Moscow, 1988).

    Google Scholar 

  12. S. V. Manakov, Sov. Phys. JETP 40(2), 269 (1974).

    MathSciNet  ADS  Google Scholar 

  13. D. A. Bagdasaryan, A. O. Makaryan, and P. S. Pogosyan, JETP Lett. 37(10), 594 (1983).

    ADS  Google Scholar 

  14. D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, Phys. Rev. Lett. 53, 1555 (1984).

    Article  ADS  Google Scholar 

  15. P. G. Kryukov, Femtosecond Pulses (Fizmatlit, Moscow, 2008) [in Russian].

    Google Scholar 

  16. U. A. Abdullin, G. A. Lyakhov, O. V. Rudenko, and A. S. Chirkin, Sov. Phys. JETP 39(4), 633 (1974).

    ADS  Google Scholar 

  17. S. V. Sazonov and A. F. Sobolevskii, JETP Lett. 75(12), 621 (2002).

    Article  ADS  Google Scholar 

  18. S. V. Sazonov and A. F. Sobolevskii, JETP 96(6), 1019 (2003).

    Article  ADS  Google Scholar 

  19. S. V. Sazonov and A. F. Sobolevskii, Kvantovaya Elektron. (Moscow) 35, 1019 (2005).

    Article  Google Scholar 

  20. N. Yajima and M. Oikawa, Prog. Theor. Phys. 56, 1719 (1976).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Y. C. Ma, Stud. Appl. Math. 59, 201 (1978).

    MathSciNet  Google Scholar 

  22. V. E. Zakharov, Sov. Phys. JETP 35(5), 908 (1972).

    ADS  Google Scholar 

  23. S. Kočinac, Z. Ikonić, and V. Milanović, Opt. Commun. 140, 89 (1997).

    Article  ADS  Google Scholar 

  24. L. W. Casperson, Phys. Rev. A: At., Mol., Opt. Phys. 57, 609 (1998).

    Article  ADS  Google Scholar 

  25. M. Agrotis, N. M. Ercolani, S. V. Glasgow, and G. V. Moloney, Physica D (Amsterdam) 138, 134 (2000).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. A. A. Zabolotskii, JETP 94(5), 869 (2002).

    Article  ADS  Google Scholar 

  27. A. I. Maimistov and J.-G. Caputo, Opt. Spectrosc. 94(2), 245 (2003).

    Article  ADS  Google Scholar 

  28. S. V. Sazonov, JETP 97(4), 722 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  29. H. Vogt, Phys. Rev. B: Condens. Matter 58, 9916 (1998).

    Article  ADS  Google Scholar 

  30. W. Yang, S. Gong, R. Li, and Z. Xu, Phys. Rev. A: At., Mol., Opt. Phys. 74, 013407 (2006).

    Article  ADS  Google Scholar 

  31. I. I. Sobel’man, Introduction to the Theory of Atomic Spectra (Pergamon, Oxford, 1972; Nauka, Moscow, 1977).

    Google Scholar 

  32. L. Allen and J. Eberly, Optical Resonance and Two-Level Atoms (Wiley, New York, 1975; Mir, Moscow, 1978).

    Google Scholar 

  33. S. V. Sazonov and N. V. Ustinov, JETP 100(2), 256 (2005).

    Article  ADS  Google Scholar 

  34. J. D. Gibbon, P. J. Caudrey, J. C. Eilbeck, and R. K. Bullough, J. Phys. A: Math. Gen. 6, 1237 (1973).

    Google Scholar 

  35. M. B. Vinogradova, O. V. Rudenko, and A. P. Sukhorukov, Theory of Waves (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  36. V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons (Springer, Berlin, 1991).

    MATH  Google Scholar 

  37. A. G. Stepanov, A. A. Mel’nikov, V. O. Kompanets, and S. V. Chekalin, JETP Lett. 85(5), 227 (2007).

    Article  ADS  Google Scholar 

  38. A. N. Bugai and S. V. Sazonov, JETP Lett. 87(8), 403 (2008).

    Article  ADS  Google Scholar 

  39. S. K. Zhdanov and B. A. Trubnikov, Sov. Phys. JETP 65(5), 904 (1987).

    Google Scholar 

  40. S. K. Zhdanov and B. A. Trubnikov, Quasi-Gaseous Unstable Media (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  41. S. V. Sazonov, JETP 98(6), 1237 (2004).

    Article  ADS  Google Scholar 

  42. N. V. Karlov and N. A. Kirichenko, Vibrations, Waves, and Structures (Nauka, Moscow, 2001) [in Russian].

    Google Scholar 

  43. R. E. Slusher and H. H. Gibbs, Phys. Rev. Lett. 24, 638 (1970).

    Article  ADS  Google Scholar 

  44. S. N. Vlasov, V. I. Talanov, and V. A. Petrishchev, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 14, 1353 (1971).

    Google Scholar 

  45. L. A. Bol’shov, V. V. Likhanskii, and M. I. Persiantsev, Sov. Phys. JETP 57(3), 524 (1983).

    Google Scholar 

  46. A. I. Maimistov, Kvantovaya Elektron. (Moscow) 11, 567 (1984).

    ADS  Google Scholar 

  47. L. A. Bol’shov and V. V. Likhanskii, Kvantovaya Elektron. (Moscow) 12, 1339 (1985).

    ADS  Google Scholar 

  48. A. M. Basharov and A. I. Maimistov, Sov. Phys. JETP 67(12), 2426 (1988).

    Google Scholar 

  49. H. Steudel, J. Mod. Opt. 35, 693 (1988).

    Article  ADS  Google Scholar 

  50. A. N. Bugay and S. V. Sazonov, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 74, 066608 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Sazonov.

Additional information

Original Russian Text © S.V. Sazonov, N.V. Ustinov, 2012, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2012, Vol. 142, No. 5, pp. 842–861.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sazonov, S.V., Ustinov, N.V. Propagation of vector solitons in a quasi-resonant medium with stark deformation of quantum states. J. Exp. Theor. Phys. 115, 741–758 (2012). https://doi.org/10.1134/S1063776112090117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776112090117

Keywords

Navigation