Skip to main content
Log in

Multiconfiguration Hartree-Fock method: Direct diagonalization for the construction of a multielectron basis

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A method based on the direct diagonalization of basis states in the framework of the multiconfiguration Hartree-Fock procedure has been proposed for constructing the multielectron basis. With the use of the technique of ladder operators of the orbital angular momentum and spin, this method has been generalized to the case of arbitrary electron configurations. It has been shown that such an approach can be easily implemented on a computer and has low requirements for computational resources in the case of d and f-electrons. The calculations of the multielectron basis states have been exemplified for several electron configurations and various sets of quantum numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Froese Fisher, T. Brage, and P. Jönsson, Computational Atomic Structure: An MCHF Approach (Institute of Physics, Bristol and Philadelphia, 2003).

    Google Scholar 

  2. E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, Cambridge, 1935; Inostrannaya Literatura, Moscow, 1949).

    Google Scholar 

  3. J. C. Slater, Quantum Theory of Atomic Structure (McGraw-Hill, New York, 1960).

    MATH  Google Scholar 

  4. I. Lindgren and J. Morrison, Atomic Many-Body Theory (Springer, Berlin, 1982).

    Google Scholar 

  5. D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (Nauka, Leningrad, 1975; World Scientific, Singapore, 1988).

    Google Scholar 

  6. I. I. Sobelman, Introduction to the Theory of Atomic Spectra (Fizmatlit, Moscow, 1963; Pergamon, Oxford, 1972).

    Google Scholar 

  7. G. Racah, Phys. Rev. 61, 186 (1941).

    Article  ADS  Google Scholar 

  8. G. Racah, Phys. Rev. 62, 438 (1942).

    Article  ADS  Google Scholar 

  9. G. Racah, Phys. Rev. 63, 367 (1943).

    Article  ADS  Google Scholar 

  10. G. Racah, Phys. Rev. 76, 1352 (1949).

    Article  MATH  ADS  Google Scholar 

  11. N. M. Gray and L. A. Wills, Phys. Rev. 38, 248 (1931).

    Article  MATH  ADS  Google Scholar 

  12. M. H. Johnson, Jr., Phys. Rev. 38, 1628 (1931).

    Article  MATH  ADS  Google Scholar 

  13. M. H. Johnson, Jr., Phys. Rev. 39, 197 (1932).

    Article  MATH  ADS  Google Scholar 

  14. H. A. Bethe, Intermediate Quantum Mechanics (W. A. Benjamin, New York, 1964; Mir, Moscow, 1965).

    Google Scholar 

  15. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Fizmatlit, Moscow, 2001; Butterworth-Heinemann, Oxford, 2002).

    Google Scholar 

  16. G. H. Golub, C. F. Van Loan, Matrix Computations (Johns Hopkins University Press, Baltimore, Maryland, United States, 1996; Mir, Moscow, 1999).

    MATH  Google Scholar 

  17. http://td.lpi.ru, pages “People,” M. S. Litsarev.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Litsarev.

Additional information

Original Russian Text © M.S. Litsarev, O.V. Ivanov, 2010, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2010, Vol. 138, No. 1, pp. 28–32.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litsarev, M.S., Ivanov, O.V. Multiconfiguration Hartree-Fock method: Direct diagonalization for the construction of a multielectron basis. J. Exp. Theor. Phys. 111, 22–26 (2010). https://doi.org/10.1134/S1063776110070034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776110070034

Keywords

Navigation