Skip to main content
Log in

Measurements of work function of pristine and CuI doped carbon nanotubes

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We report the results on measurements of the work function of carbon nanotubes and carbon-nanotube-based materials including pristine multi-walled and single-walled carbon nanotubes as well as single-walled carbon nanotubes intercalated by CuI with the Kelvin probe technique. We found the work function value 4.97–4.98 eV for pristine carbon nanotubes, while carbon nanotubes infilled with CuI demonstrate the work function value decreased by more than 0.1 eV (4.86–4.96 eV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature (London) 354, 56 (1991).

    Article  ADS  Google Scholar 

  2. Ph. Avouris, Z. Chen, and V. Perebeinos, Nat. Nanotechnol. 2, 605 (2007).

    Article  ADS  Google Scholar 

  3. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1999).

    Google Scholar 

  4. L. M. Ang, T. S. A. Hor, G. Q. Xu, C. H. Tung, S. P. Zhao, and J. L. S. Wang, Carbon 38, 363 (2000).

    Article  Google Scholar 

  5. G.-H. Jeong, A. A. Farajian, R. Hatakeyama, T. Hirata, T. Yaguchi, K. Tohji, H. Mizuseki, and Y. Kawazoe, Phys. Rev. B: Condens. Matter 68, 075410 (2003).

    Google Scholar 

  6. X. Fan, E. C. Dickey, P. C. Eklund, K. A. Williams, L. Grigorian, R. Buczko, S. T. Pantelides, and S. J. Pennycook, Phys. Rev. Lett. 84, 4621 (2000).

    Article  ADS  Google Scholar 

  7. M. Baenitz and K. Lueders, Superconductivity in Fullerene Compounds (Springer, Berlin, 2007).

    Google Scholar 

  8. B. R. Sankapal, K. Setyowati, and J. Chen, Appl. Phys. Lett. 91, 173103 (2007).

    Google Scholar 

  9. G. Zhao, Qi Zhang, H. Zhang, G. Yang, O. Zhou, L.-C. Qin, and J. Tang, Appl. Phys. Lett. 89, 263113 (2006).

    Google Scholar 

  10. X. Cui, M. Freitag, R. Martel, L. Brus, and P. Avouris, Nano Lett. 3, 783 (2003).

    Article  ADS  Google Scholar 

  11. Yu. Miyato, K. Kobayashi, K. Matsushige, and H. Yamada, Jpn. J. Appl. Phys., Part 1 44, 1633 (2005).

    Article  Google Scholar 

  12. T. Umesaka, H. Ohnaka, Yu. Ohno, S. Kishimoto, K. Maezawa, and T. Mizutani, Jpn. J. Appl. Phys., Part 1 46, 2496 (2007).

    Article  Google Scholar 

  13. G. Riu, A. Verdaguer, F. A. Chaves, I. Martín, P. Godignon, E. Lora-Tamayo, D. Jiménez, and F. Pérez-Murano, Microelectron. Eng. 85, 1413 (2008).

    Article  Google Scholar 

  14. D. N. Borisenko, N. N. Kolesnikov, M. P. Kulakov, and V. V. Kveder, Int. J. Nanoscience 1, 235 (2002).

    Article  Google Scholar 

  15. A. V. Krestinin, M. B. Kislov, and A. G. Ryabenko, in NATO Science Series, II: Mathematics, Physics, and Chemistry, Ed. by S. Gucery, Y. G. Gogotsi, and V. Kuznetsov (Kluwer, Dordrecht, The Netherlands, 2004), Vol. 169, p. 107.

    Google Scholar 

  16. A. V. Krestinin, N. A. Kiselev, A. V. Raevskii, A. G. Ryabenko, D. N. Zakharov, and G. I. Zvereva, Eurasian Chem.-Technol. J. 5, 7 (2003).

    Google Scholar 

  17. M. V. Chernysheva, A. A. Eliseev, A. V. Lukashin, Yu.D. Tretyakov, S. V. Savilov, N. A. Kiselev, O. M. Zhigalina, A. S. Kumskov, A. V. Krestinin, and J. L. Hutchison, Physica E (Amsterdam) 37, 62 (2007).

    ADS  Google Scholar 

  18. N. A. Kiselev, R. M. Zakalyukin, O. M. Zhigalina, N. Grobert, A. S. Kumskov, Yu. V. Grigoriev, M. V. Chernysheva, A. A. Eliseev, A. V. Krestinin, Yu. D. Tretyakov, B. Freitag, and J. L. Hutchison, J. Microsc. (Oxford) 232, 335 (2008).

    Google Scholar 

  19. P. Corio, A. P. Santos, P. S. Santos, M. L. A. Temperini, V. W. Brar, M. A. Pimenta, and M. S. Dresselhaus, Chem. Phys. Lett. 383, 475 (2004).

    Article  ADS  Google Scholar 

  20. M. V. Chernysheva, E. A. Kiseleva, N. I. Verbitskii, A. A. Eliseev, A. V. Lukashin, Yu. D. Tretyakov, S. V. Savilov, N. A. Kiselev, O. M. Zhigalina, A. S. Kumskov, A. V. Krestinin, and J. L. Hutchison, Physica E (Amsterdam) 40, 2283 (2008).

    ADS  Google Scholar 

  21. H. Hosoi, M. Nakamura, Y. Yamada, K Sueoka, and K. Mukasa, J. Phys.: Conf. Ser. 100, 052085 (2008).

    Google Scholar 

  22. M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, Appl. Phys. Lett. 58, 2921 (1991).

    Article  ADS  Google Scholar 

  23. P. Girard, Nanotechnology 12, 485 (2001).

    Article  ADS  Google Scholar 

  24. A. Bachtold, M. S. Fuhrer, S. Plyasunov, M. Forero, E. H. Anderson, A. Zettl, and P. L. McEuen, Phys. Rev. Lett. 84, 6082 (2000).

    Article  ADS  Google Scholar 

  25. J. Zhao, J. Han, and J. Ping Lu, Phys. Rev. B: Condens. Matter 65, 193 401 (2002).

    Google Scholar 

  26. P. Delaney, H. J. Choi, J. Ihm, S. G. Louie, and M. L. Cohen, Phys. Rev. B: Condens. Matter 60, 7899 (1999).

    ADS  Google Scholar 

  27. W. Zhu, C. Bower, O. Zhou, G. Kochanski, and S. Jin, Appl. Phys. Lett. 75, 873 (1999).

    Article  ADS  Google Scholar 

  28. A. Wadhawan, R. E. Stallcup II, and J. M. Perez, Appl. Phys. Lett. 78, 108 (2001).

    Article  ADS  Google Scholar 

  29. S. Suzuki, Y. Watanabe, Y. Homma, Shin-ya Fukuba, S. Heun, and A. Locatelli, Appl. Phys. Lett. 85, 127 (2004).

    Article  ADS  Google Scholar 

  30. P. G. Collins and A. Zettl, Phys. Rev. B: Condens. Matter 55, 9391 (1997).

    ADS  Google Scholar 

  31. R. Gao, Zh. Pan, and Zh. L. Wang, Appl. Phys. Lett. 78, 1757 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zhukov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhukov, A.A., Gartman, V.K., Borisenko, D.N. et al. Measurements of work function of pristine and CuI doped carbon nanotubes. J. Exp. Theor. Phys. 109, 307–313 (2009). https://doi.org/10.1134/S1063776109080172

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776109080172

PACS numbers

Navigation