Skip to main content
Log in

Photoluminescence quenching through resonant energy transfer in blends of conjugated polymer with low-molecular acceptor

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A model is proposed for photoluminescence quenching due to resonant energy transfer in a blend of a conjugated polymer and a low-molecular energy acceptor. An analytical dependence of the normalized photoluminescence intensity on the acceptor concentration is derived for the case of a homogeneous blend. This dependence can be described by two fitting parameters related to the Förster radii for energy transfer between conjugated segments of the polymer and between the conjugated polymer segment and the energy acceptor. Asymptotic approximations are obtained for the model dependence that make it possible to estimate the contribution from the spatial migration of excitons to the photoluminescence quenching. The proposed model is used to analyze experimental data on the photoluminescence quenching in a blend of the soluble derivative of poly(p-phenylene vinylene) and trinitrofluorenone [13]. The Förster radius for resonant energy transfer between the characteristic conjugated segment of poly(p-phenylene vinylene) and the energy acceptor is determined to be r F = 2.6 ± 0.3 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. W. Thomas, G. D. Joly, and T. M. Swager, Chem. Rev. 107, 1339 (2007).

    Article  Google Scholar 

  2. Y. V. Romanovskii, V. I. Arkhipov, and H. Bässler, Phys. Rev. B: Condens. Matter 64 033104 (2001).

    Google Scholar 

  3. D. D. C. Bradley and R. H. Friend, J. Phys.: Condens. Matter 1, 3671 (1989).

    Article  ADS  Google Scholar 

  4. Yuri Zaushitsyn, Kim G. Jespersen, Leonas Valkunas, Villy Sundström, and Arkady Yartsev, Phys. Rev. B: Condens. Matter 75, 195201 (2007).

    ADS  Google Scholar 

  5. T. Q. Nguyen, I. B. Martini, J. Liu, and B. J. Schwartz, J. Phys. Chem. B 104, 237 (2000).

    Article  Google Scholar 

  6. I. B. Martini, A. D. Smith, and B. J. Schwartz, Phys. Rev. B: Condens. Matter 69, 35204 (2004).

    ADS  Google Scholar 

  7. D. P. Zoran, J. Chem. Phys. 76, 2714 (1982).

    Article  Google Scholar 

  8. M. Deussen, M. Scheidler, and H. Bassler, Synth. Met. 73, 123 (1995).

    Article  Google Scholar 

  9. M. Deussen, P. Haring Bolivar, G. Wegmann, H. Kurz, and H. Bässler Chem. Phys. 207, 147 (1996).

    Article  Google Scholar 

  10. V. Gulbinas, Y. Zaushitsyn, V. Sundström, D. Hertel, H. Bässler, and A. Yartsev, Phys. Rev. Lett. 89, 107 401 (2002).

    Article  Google Scholar 

  11. H. D. Burrows, J. S. de Melo, C. Serpa, L. G. Arnaut, M. da G. Miguel, A. P. Monkman, I. Hamblett, and S. Navaratnam, Chem. Phys. 285, 3 (2002).

    Article  Google Scholar 

  12. K. H. Lee, R. A. J. Janssen, N. S. Sariciftci, and A. J. Heeger, Phys. Rev. B: Condens. Matter 49, 5781 (1994).

    ADS  Google Scholar 

  13. V. I. Arkhipov, E. V. Emelianova, and H. Bassler, Phys. Rev. B: Condens. Matter 70, 205205 (2004).

    Google Scholar 

  14. J. Klafter and A. Blumen, Chem. Phys. Lett. 119, 377 (1985).

    Article  ADS  Google Scholar 

  15. U. Lemmer, A. Ochse, M. Deussen, R. F. Mahrt, E. O. Göbel, H. Bässler, P. Haring Bolivar, G. Wegmann, and H. Kurz, Synth. Met. 78, 289 (1996).

    Article  Google Scholar 

  16. W. L. Ma, C. Y. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005).

    Article  Google Scholar 

  17. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, Appl. Phys. Lett. 78, 841 (2001).

    Article  ADS  Google Scholar 

  18. D. Lakowics, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983; Mir, Moscow, 1986).

    Google Scholar 

  19. I. G. Scheblykin, A. Yartsev, T. Pullerits, V. Gulbinas, and V. Sundström, J. Phys. Chem. B 111, 6303 (2007).

    Article  Google Scholar 

  20. R. J. Sension, A. Z. Szarka, G. R. Smith, and R. M. Hochstrasser, Chem. Phys. Lett. 185, 179 (1991).

    Article  ADS  Google Scholar 

  21. Y. Wang and A. Suna, J. Phys. Chem. B 101, 5627 (1997).

    Article  Google Scholar 

  22. Y. X. Liu, M. A. Summers, S. R. Scully, and M. D. McGehee, J. Appl. Phys. 99, 093521 (2006).

  23. A. A. Bakulin, S. G. Elizarov, A. Khodarev, D. S. Martyanov, I. V. Golovnin, D. Y. Paraschuk, M. M. Triebel, I. V. Tolstov, E. L. Frankevich, S. A. Arnautov, and E. M. Nechvolodova, Synth. Met. 147, 221 (2004).

    Article  Google Scholar 

  24. D. Y. Paraschuk, S. G. Elizarov, A. N. Khodarev, A. N. Shchegolikhin, S. A. Arnautov, and E. M. Nechvolodova, Pis’ma Zh. Éksp. Teor. Fiz. 81(9), 467 (2005) [JETP Lett. 81 (9), 467 (2005)].

    Google Scholar 

  25. A. I. Burshteĭn, Usp. Fiz. Nauk 143(4), 553 (1984) [Sov. Phys.—Usp. 27 (8), 579 (1984)].

    Google Scholar 

  26. V. I. Arkhipov and H. Bassler, Phys. Status Solidi A 201, 1152 (2004).

    Article  ADS  Google Scholar 

  27. T. Forster, Discuss. Faraday Soc. 27, 7 (1959).

    Article  Google Scholar 

  28. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, Science (Washington) 258, 1474 (1992).

    Article  ADS  Google Scholar 

  29. D. L. Dexter, J. Chem. Phys. 21, 836 (1953).

    Article  ADS  Google Scholar 

  30. S. Westenhoff, C. Daniel, R. H. Friend, C. Silva, V. Sundström, and A. Yartsev, J. Chem. Phys. 122, 094903 (2005).

    Google Scholar 

  31. M. M. L. Grage, P. W. Wood, A. Ruseckas, T. Pullerits, W. Mitchell, P. L. Burn, I. D. W. Samuel, and V. Sundström, J. Chem. Phys. 118, 7644 (2003).

    Article  ADS  Google Scholar 

  32. S. Westenhoff, W. J. D. Beenken, A. Yartsev, and N. C. Greenham, J. Chem. Phys. 125, 154903 (2006).

    Google Scholar 

  33. W. J. D. Beenken and T. Pullerits, J. Chem. Phys. 120, 2490 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Zapunidi.

Additional information

Original Russian Text © S.A. Zapunidi, D.Yu. Paraschuk, 2008, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 134, No. 6, pp. 1257–1268.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zapunidi, S.A., Paraschuk, D.Y. Photoluminescence quenching through resonant energy transfer in blends of conjugated polymer with low-molecular acceptor. J. Exp. Theor. Phys. 107, 1079–1089 (2008). https://doi.org/10.1134/S1063776108120169

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108120169

PACS numbers

Navigation