Skip to main content
Log in

Effect of structural defects on anomalous ultrasound propagation in solids during second-order phase transitions

  • Order, Disorder, and Phase Transition in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The effect of structural defects on the critical ultrasound absorption and ultrasound velocity dispersion in Ising-like three-dimensional systems is studied. A field-theoretical description of the dynamic effects of acoustic-wave propagation in solids during phase transitions is performed with allowance for both fluctuation and relaxation absorption mechanisms. The temperature and frequency dependences of the scaling functions of the absorption coefficient and the ultrasound velocity dispersion are calculated in a two-loop approximation for homogeneous and structurally disordered systems, and their asymptotic behavior in hydrodynamic and critical regions is separated. As compared to a homogeneous system, the presence of structural defects in it is shown to cause a stronger increase in the sound absorption coefficient and the sound velocity dispersion even in the hydrodynamic region as the critical temperature is reached. As compared to homogeneous analogs, structurally disordered systems should exhibit stronger temperature and frequency dependences of the acoustic characteristics in the critical region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ikushima and R. Feigelson, J. Phys. Chem. Solids 32, 417 (1971).

    Article  ADS  Google Scholar 

  2. Kh. K. Aliev, I. Kh. Kamilov, and A. M. Omarov, Zh. Éksp. Teor. Fiz. 95(5), 1896 (1989) [Sov. Phys. JETP 68 (5), 1096 (1989)].

    Google Scholar 

  3. L. D. Landau and I. M. Khalatnikov, Dokl. Akad. Nauk SSSR 96, 496 (1954).

    Google Scholar 

  4. A. Pawlak, Phys. Rev. B: Condens. Matter 44, 5296 (1991).

    ADS  Google Scholar 

  5. A. M. Schorgg and F. Schwabl, Phys. Rev. B: Condens. Matter 49, 11682 (1993).

    Google Scholar 

  6. I. K. Kamilov and Kh. K. Aliev, Usp. Fiz. Nauk 168(9), 953 (1998) [Phys. Usp. 41 (9), 865 (1998)].

    Article  Google Scholar 

  7. R. A. Ferrel, B. Mirhashem, and B. Bhattacharjee, Phys. Rev. B: Condens. Matter 35, 4662 (1987).

    ADS  Google Scholar 

  8. T. J. Moran and B. Lüthi, Phys. Rev. B: Solid State 4, 122 (1971).

    ADS  Google Scholar 

  9. M. Suzuki and T. Komatsubara, J. Phys. C: Solid State Phys. 15, 4559 (1982).

    Article  ADS  Google Scholar 

  10. A. B. Harris, J. Phys. C: Solid State Phys. 7, 1671 (1974).

    Article  ADS  Google Scholar 

  11. A. Pawlak and B. Fechner, Phys. Rev. B: Condens. Matter 40, 9324 (1989).

    ADS  Google Scholar 

  12. P. V. Prudnikov and V. V. Prudnikov, J. Phys.: Condens. Matter. 17, L485 (2005).

    Article  ADS  Google Scholar 

  13. V. V. Prudnikov, P. V. Prudnikov, and A. A. Fedorenko, Phys. Rev. B: Condens. Matter 62, 8777 (2000); Phys. Rev. B: Condens. Matter 63, 184201 (2001).

    ADS  Google Scholar 

  14. R. Fol’k, Yu. Golovach, and T. Yavorskiĭ, Usp. Fiz. Nauk 173(2), 175 (2003) [Phys. Usp. 46 (2), 169 (2003)].

    Google Scholar 

  15. A. I. Larkin and S. A. Pikin, Zh. Éksp. Teor. Fiz. 56(5), 1664 (1969) [Sov. Phys. JETP 29 (5), 891 (1969)].

    Google Scholar 

  16. Y. Imry, Phys. Rev. Lett. 33, 1304 (1974).

    Article  ADS  Google Scholar 

  17. Yu. A. Izyumov and V. N. Syromyatnikov, Phase Transitions and Crystal Symmetry (Nauka, Moscow, 1984; Kluwer, Dordrecht, 1990).

    Google Scholar 

  18. H. Iro and F. Schwabl, Solid State Commun. 46, 205 (1983).

    Article  ADS  Google Scholar 

  19. D. R. Nelson, Phys. Rev. B: Solid State 14, 1123 (1976).

    ADS  Google Scholar 

  20. R. Folk, H. Iro, and F. Schwabl, Z. Phys. B: Condens. Matter 27, 169 (1977).

    ADS  Google Scholar 

  21. V. V. Prudnikov and S. V. Belim, Fiz. Tverd. Tela (St. Petersburg) 43(7), 1299 (2001) [Phys. Solid State 43 (7), 1353 (2001)].

    Google Scholar 

  22. V. V. Prudnikov, S. V. Belim, A. V. Ivanov, et al., Zh. Éksp. Teor. Fiz. 114(3), 972 (1988) [Sov. Phys. JETP 87 (3), 527 (1988)].

    Google Scholar 

  23. K. B. Varnashev and A. I. Sokolov, Fiz. Tverd. Tela (St. Petersburg) 38(12), 3665 (1996) [Phys. Solid State 38 (12), 1996 (1996)]; A. I. Sokolov, K. B. Varnashev, and A. I. Mudrov, Int. J. Mod. Phys. B 12, 1365 (1998); A. I. Sokolov and K. B. Varnashev, Phys. Rev. B: Condens. Matter 59, 8363 (1999).

    Google Scholar 

  24. N. Rosov, C. Hohenemser, and M. Eibschutz, Phys. Rev. B: Condens. Matter 46, 3452 (1992).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Prudnikov.

Additional information

Original Russian Text © P.V. Prudnikov, V.V. Prudnikov, E.A. Nosikhin, 2008, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 133, No. 5, pp. 1027–1035.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prudnikov, P.V., Prudnikov, V.V. & Nosikhin, E.A. Effect of structural defects on anomalous ultrasound propagation in solids during second-order phase transitions. J. Exp. Theor. Phys. 106, 897–904 (2008). https://doi.org/10.1134/S1063776108050075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108050075

PACS numbers

Navigation