Skip to main content
Log in

New Microporous Copper Diphosphate Chloride in a Series of Homeotypic Compounds: Hydrothermal Synthesis, Crystal Structure, and Crystal Chemistry

  • STRUCTURE OF INORGANIC COMPOUNDS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Single crystals of the new zeolite-like copper diphosphate chloride |(NH4)5(H2O)9CaVCl3(OH)| [(Cu6(P2O7)4Cl3] were prepared by the hydrothermal synthesis route. The crystal structure of the new compound was studied by X-ray diffraction using synchrotron radiation (λ = 0.64066 Å) at T = 100 К (R = 0.052): a = 17.9357(5) Å, c = 13.5377(4) Å, sp. gr. I4/mcm, Z = 4, ρcalc = 2.541 g/cm3. A copper tetramer is the main structural unit, which is formed by four CuO4Cl pyramids sharing a vertex occupied by a Cl atom. The clusters of the composition Cu4O12Cl are connected through diphosphate groups and additional Cu-centered polyhedra to form a mixed-type open framework. Large channels in the framework are occupied by \({\text{NH}}_{4}^{ + }\), V 4+, and Ca2+ cations, (OH) and Cl anions, and H2O molecules. Similar complex ionic inclusions are characteristic of a series of homeotypic copper diphosphate chlorides exhibiting ion-exchange properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. O. V. Yakubovich, G. V. Kiriukhina, O. V. Dimitrova, et al., Dalton Trans. 45, 2598 (2016).

    Article  Google Scholar 

  2. O. V. Yakubovich, G. V. Kiriukhina, L. V. Shvanskaya, et al., Acta Crystallogr. B 76, 483 (2020).

    Article  Google Scholar 

  3. P. A. Sandomirskii and N. V. Belov, Crystal Chemistry of Mixed Anion Radicals (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  4. O. V. Yakubovich, I. M. Steele, G. V. Kiriukhina, et al., Z. Krist. 230 (5), 337 (2015).

    Google Scholar 

  5. G. Kiriukhina, O. Yakubovich, L. Shvanskaya, et al., Materials 15 (4), 1411 (2022).

    Article  ADS  Google Scholar 

  6. C. Baerlocher and L. B. McCusker, Database of Zeolite Structures. http://www.iza-structure.org/databases/.

  7. P. F. Henry, R. W. Hughes, S. C. Ward, et al., Chem. Commun. 19, 1959 (2000).

    Article  Google Scholar 

  8. T. Muñoz, Jr., A. M. Prakash, L. Kevan, et al., J. Phys. Chem. B 102, 1379 (1998).

    Article  Google Scholar 

  9. G. Finger, J. Kornatowski, K. Jancke, et al., Micropor. Mesopor. Mater. 33, 127 (1999).

    Article  Google Scholar 

  10. C. Baerlocher, L. B. McCusker, and D. H. Olson, Atlas of Zeolite Framework Types (Elsevier, 2007).

    Google Scholar 

  11. R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).

    Article  ADS  Google Scholar 

  12. V. Dyadkin, Ph. Pattison, V. Dmitriev, et al., J. Synchr. Radiat. 23, 825 (2016).

    Article  Google Scholar 

  13. Agilent, CrysAlis PRO (Agilent Technologies Ltd, Yarnton, Oxfordshire, 2011).

  14. G. M. Sheldrick, Acta Crystallogr. A 71, 3 (2015).

    Article  Google Scholar 

  15. G. M. Sheldrick, Acta Crystallogr. C 71, 8 (2015).

    Article  Google Scholar 

  16. L. J. Farrugia, J. Appl. Crystallogr. 45, 849 (2012).

    Article  Google Scholar 

  17. Q. Huang, M. Ulutagay, P. A. Michener, et al., J. Am. Chem. Soc. 121, 10323 (1999).

    Article  Google Scholar 

  18. E. R. Williams, R. M. Leithall, R. Rajab, et al., Chem. Commun. 49, 249 (2013).

    Article  Google Scholar 

  19. J. Rouquerol, D. Avnir, C. W. Fairbridge, et al., Pure Appl. Chem. 66 (8), 1739 (1994).

    Article  Google Scholar 

  20. F. Liebau and H. Küppers, Acta Crystallogr. B 58, 457 (2002).

    Article  Google Scholar 

  21. G. O. Brunner and W. M. Meier, Nature 337 (6203), 146 (1989).

    Article  ADS  Google Scholar 

  22. Q. Huang, Sh.-J. Hwu, and X. Mo, Ang. Chem. Int. Ed. 40 (9), 1690 (2001).

    Article  Google Scholar 

  23. Q. Huang and Sh.-J. Hwu, Inorg. Chem. 42, 655 (2003).

    Article  Google Scholar 

  24. L. Shvanskaya, O. Yakubovich, Bychkov, et al., J. Solid State Chem. 222, 44 (2015).

    Article  ADS  Google Scholar 

  25. L. Liu, G. Che, G. Liu, et al., Physics C 384, 75 (2003).

    Article  ADS  Google Scholar 

  26. E. Z. Kurmaev, A. Moewes, G. T. Woods, et al., J. Solid State Chem. 170, 188 (2003).

    Article  ADS  Google Scholar 

  27. S. V. Krivovichev, S. K. Filatov, and L. P. Vergasova, Mineral. Petrol. 107, 235 (2013).

    Article  ADS  Google Scholar 

  28. F. Pertlik and J. Zemann, Mineral. Petrol. 38, 291 (1988).

    Article  ADS  Google Scholar 

  29. F. C. Hawthorne, M. A. Cooper, J. D. Grice, et al., Mineral. Mag. 66, 301 (2002).

    Article  Google Scholar 

  30. I. V. Pekov, N. V. Zubkova, M. E. Zelenski, et al., Mineral. Mag. 77, 107 (2018).

    Article  Google Scholar 

  31. D. I. Badrtdinov, E. S. Kuznetsova, V. Yu. Verchenko, et al., Sci. Rep. 8, 2379 (2018).

    Article  ADS  Google Scholar 

  32. E. Constable, S. Raymond, S. Petit, et al., Phys. Rev. B 96, 014413 (2017).

  33. I. V. Kornyakov, V. A. Vladimirova, O. I. Siidra, et al., Molecules 26 (7), 1833 (2021).

    Article  Google Scholar 

  34. O. I. Siidra, E. V. Nazarchuk, A. A. Agakhanov, et al., Mineral. Mag. 83, 847 (2019).

    Article  Google Scholar 

  35. I. V. Pekov, S. N. Britvin, V. O. Yapaskurt, et al., Zap. Vseross. Mineral. O-va 149 (3), 1 (2020).

    Google Scholar 

  36. O. V. Yakubovich and G. V. Kiriukhina, Minerals 11 (3), 273 (2021).

    Article  ADS  Google Scholar 

  37. O. V. Yakubovich, L. V. Shvanskaya, G. V. Kiriukhina, et al., Inorg. Chem. 60, 11450 (2021).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank V.O. Yapaskurt for studying the chemical composition of the crystals by electron-probe X-ray microanalysis.

Funding

This study was financially supported by the Grant of the President of the Russian Federation for the state support of young Russian scientists–candidates of science (grant MK-1613.2021.1.5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Kiriukhina.

Ethics declarations

The authors declare no conflict of interest, financial or otherwise.

Additional information

Translated by T. Safonova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiriukhina, G.V., Yakubovich, O.V., Dimitrova, O.V. et al. New Microporous Copper Diphosphate Chloride in a Series of Homeotypic Compounds: Hydrothermal Synthesis, Crystal Structure, and Crystal Chemistry. Crystallogr. Rep. 67, 545–555 (2022). https://doi.org/10.1134/S1063774522040113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774522040113

Navigation