Skip to main content
Log in

Molecular and crystal structure of 4-hexylbenzoic acid: Design of the mesophase

  • Structure of Organic Compounds
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The crystal structure of 4-hexylbenzoic acid C6H13-C6H4-COOH, which forms a nematic mesophase upon melting, is determined. The crystal contains three crystallographically independent molecules. Their molecular skeletons are made up of two almost planar fragments: a benzene ring, π-conjugated with the carboxyl group and a planar zigzag aliphatic fragment. One of the independent molecules forms centrosymmetric dimers via pairs of hydrogen bonds between carboxyl groups, whereas the two others are linked via hydrogen bonds. The dimers in the crystal are packed into pseudostacks with a pronounced nonparallel arrangement of conjugated fragments. There is no good mutual projecting of benzene rings in the stacks, which corresponds to efficient π-stacking interaction. The graph describing the mesophase of this compound contains only one structure-forming element (a hydrogen bond) and corresponds to the nematic mesophase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Pestov, Physical Properties of Liquid Crystals / Landolt-Börnstein.Numerical Data and Functional Relationship in Science and Technology. New Series (Springer, Berlin, 2003), Vol. VIII/5 A.

    Google Scholar 

  2. L. G. Kuz’mina, N. S. Kucherepa, S. M. Pestov, et al., Kristallografiya 54(5), 908 (2009) [Crystallogr. Rep. 54 (5), 862 (2009)].

    Google Scholar 

  3. J.-M. Lehn, Supramolecular Chemistry. Concepts and Perspectives (Wiley-VCH, Weinheim, 1998).

    Google Scholar 

  4. F. Vögtle, Supramolecular Chemistry. An Introduction (Wiley, Chichester, 1991).

    Google Scholar 

  5. Comprehensive Supramolecular. Chemistry, Ed. by J.-M. Lehn and J. L. Atwood (Pergamon, Oxford, 1996), Vol. 1–11.

    Google Scholar 

  6. P. Hobza and R. Zahradnik, Intermolecular Complexes: the Role of van der Waals Systems in Physical Chemistry and in the Biodisciplines (Academia, Praga, 1988).

    Google Scholar 

  7. Intermolecular Interactions: from Diatomics to Biopolimers, Ed. by B. Pullman (Wiley, Chichester, 1978).

    Google Scholar 

  8. P. Schuster, Angew. Chem. Int. Ed. 20, 546 (1981).

    Article  Google Scholar 

  9. K. Müller-Dethlef and P. Hobza, Chem. Rev. 100, 143 (2000).

    Article  Google Scholar 

  10. S. K. Burley and G. A. Petsko, J. Am. Chem. Soc. 108, 7995 (1986).

    Article  Google Scholar 

  11. P. Hobza, H. L. Selzle, and E. W. Schlag, Chem. Rev. 94, 1767 (1994).

    Article  Google Scholar 

  12. P. Hobza, H. L. Selzle, and E. W. Schlag, J. Phys. Chem. 100, 18790 (1996).

    Article  Google Scholar 

  13. R. S. Mulliken and W. B. Person, Molecular Complexes: A Lecture and Reprint Volume (Wiley, New York, 1969).

    Google Scholar 

  14. C. Janiak, J. Chem. Soc. Dalton Trans., 3885 (2000).

  15. SAINT. Version 6.02A (Bruker AXS, Madison, WI, 2001).

  16. SHELXTL-Plus. Version 5.10 (Bruker AXS, Madison, WI, 1997).

  17. A. J. Blake, I. A. Fallis, S. Parsons, et al., Acta Crystallogr. C 51, 2666 (1995).

    Article  Google Scholar 

  18. N. K. Lokanath, M. A. Sridhar, D. Revannasiddaiah, and J. S. Prasad, Liq. Cryst. 27, 767 (2000).

    Article  Google Scholar 

  19. J. M. Seddon, Handbook of Liquid Crystals, Ed. by D. Demus et al. (Wiley, Weinheim, 1998), p. 635.

    Google Scholar 

  20. A. N. Kochetov, L. G. Kuz’mina, A. V. Churakov, et al., Kristallografiya 51(1), 59 (2006) [Crystallogr. Rep. 51 (1), 53 (2006)].

    Google Scholar 

  21. R. F. Bryan and P. Hartley, Mol. Cryst. Liq. Cryst. 62, 259 (1980).

    Article  Google Scholar 

  22. R. F. Bryan and L. Fallon, J. Chem. Soc. Perkin Trans. 2 1175 (1975).

    Google Scholar 

  23. F. H. Allen and W. D. S. Motherwell, Acta Crystallogr. B 58, 407 (2002).

    Article  Google Scholar 

  24. P. Gilli, V. Bertolasi, V. Ferretti, and G. Gilli, J. Am. Chem. Soc. 122, 10405 (2000).

    Article  Google Scholar 

  25. V. Bertolasi, P. Gilli, V. Ferreti, and G. Gilli, Acta Crystallogr. B 54, 50 (1998).

    Article  Google Scholar 

  26. Y. Mo, J. Mol. Model. 12, 665 (2006).

    Article  Google Scholar 

  27. R. Viswanathan, A. Asensio, and J. J. Dannenberg, J. Phys. Chem. A 108, 9205 (2004).

    Article  Google Scholar 

  28. A. Mohajeri, J. Mol. Struct.: THEOCHEM 678, 201 (2004).

    Article  Google Scholar 

  29. R. W. Gora, S. J. Grabowski, and J. Leszczynski, J. Phys. Chem. A 109, 6397 (2005).

    Article  Google Scholar 

  30. T. Steiner, Angew. Chem. Int. Ed. 41, 48 (2002).

    Article  Google Scholar 

  31. V. Vill, Liqcryst 4.7—Database of Liquid Crystalline Compounds (LCI, Hamburg, 2008); www.liqcryst.chemie.uni-hamburg.de.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Kuz’mina.

Additional information

Original Russian Text © L.G. Kuz’mina, S.M. Pestov, A.N. Kochetov, A.V. Churakov, E.Kh. Lermontova, 2010, published in Kristallografiya, 2010, Vol. 55, No. 5, pp. 835–841.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuz’mina, L.G., Pestov, S.M., Kochetov, A.N. et al. Molecular and crystal structure of 4-hexylbenzoic acid: Design of the mesophase. Crystallogr. Rep. 55, 786–792 (2010). https://doi.org/10.1134/S1063774510050111

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774510050111

Keywords

Navigation